R
↳Dependency Pair Analysis
F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
F(a, f(x, a)) -> F(f(a, x), f(a, a))
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(a, a)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(f(a, x), f(a, a))
F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
innermost
no new Dependency Pairs are created.
F(a, f(x, a)) -> F(f(a, x), f(a, a))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
innermost
one new Dependency Pair is created:
F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Forward Instantiation Transformation
F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
innermost
two new Dependency Pairs are created:
F(a, f(x, a)) -> F(a, x)
F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(f(x'''', a), a), a)) -> F(a, f(f(x'''', a), a))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Polynomial Ordering
F(a, f(f(f(x'''', a), a), a)) -> F(a, f(f(x'''', a), a))
F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
innermost
F(a, f(f(f(x'''', a), a), a)) -> F(a, f(f(x'''', a), a))
F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
POL(a) = 0 POL(f(x1, x2)) = 1 + x1 POL(F(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Remaining Obligation(s)
F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))
innermost