Term Rewriting System R:
[x]
f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
F(a, f(x, a)) -> F(f(a, x), f(a, a))
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(a, a)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(f(a, x), f(a, a))
F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(x, a)) -> F(a, f(f(a, x), f(a, a)))
one new Dependency Pair is created:

F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
F(a, f(x, a)) -> F(f(a, x), f(a, a))
F(a, f(x, a)) -> F(a, x)


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(x, a)) -> F(f(a, x), f(a, a))
one new Dependency Pair is created:

F(a, f(f(x'', a), a)) -> F(f(a, f(f(a, x''), f(a, a))), f(a, a))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

F(a, f(f(x'', a), a)) -> F(f(a, f(f(a, x''), f(a, a))), f(a, a))
F(a, f(x, a)) -> F(a, x)
F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(f(x'', a), a)) -> F(a, f(f(a, f(f(a, x''), f(a, a))), f(a, a)))
one new Dependency Pair is created:

F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Narrowing Transformation


Dependency Pairs:

F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))
F(a, f(x, a)) -> F(a, x)
F(a, f(f(x'', a), a)) -> F(f(a, f(f(a, x''), f(a, a))), f(a, a))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(f(x'', a), a)) -> F(f(a, f(f(a, x''), f(a, a))), f(a, a))
one new Dependency Pair is created:

F(a, f(f(f(x', a), a), a)) -> F(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Forward Instantiation Transformation


Dependency Pairs:

F(a, f(f(f(x', a), a), a)) -> F(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a))
F(a, f(x, a)) -> F(a, x)
F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(a, f(x, a)) -> F(a, x)
two new Dependency Pairs are created:

F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(f(f(x''', a), a), a), a)) -> F(a, f(f(f(x''', a), a), a))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 6
Forward Instantiation Transformation


Dependency Pairs:

F(a, f(f(f(f(x''', a), a), a), a)) -> F(a, f(f(f(x''', a), a), a))
F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))
F(a, f(f(f(x', a), a), a)) -> F(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(a, f(f(f(x', a), a), a)) -> F(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a))
no new Dependency Pairs are created.
The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 7
Argument Filtering and Ordering


Dependency Pairs:

F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))
F(a, f(f(f(f(x''', a), a), a), a)) -> F(a, f(f(f(x''', a), a), a))


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

F(a, f(f(x'', a), a)) -> F(a, f(x'', a))
F(a, f(f(f(x', a), a), a)) -> F(a, f(f(a, f(f(a, f(f(a, x'), f(a, a))), f(a, a))), f(a, a)))
F(a, f(f(f(f(x''', a), a), a), a)) -> F(a, f(f(f(x''', a), a), a))


The following usable rule for innermost can be oriented:

f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{a, f}

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
f(x1, x2) -> f(x1)


   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rule:


f(a, f(x, a)) -> f(a, f(f(a, x), f(a, a)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes