R
↳Dependency Pair Analysis
TERMS(N) -> SQR(N)
SQR(s(X)) -> ADD(sqr(X), dbl(X))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
ADD(s(X), Y) -> ADD(X, Y)
HALF(s(s(X))) -> HALF(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
ADD(s(X), Y) -> ADD(X, Y)
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
ADD(s(X), Y) -> ADD(X, Y)
ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')
ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')
ADD(x1, x2) -> ADD(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
DBL(s(X)) -> DBL(X)
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
DBL(s(X)) -> DBL(X)
DBL(s(s(X''))) -> DBL(s(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
DBL(s(s(X''))) -> DBL(s(X''))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
DBL(s(s(X''))) -> DBL(s(X''))
DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
DBL(s(s(s(X'''')))) -> DBL(s(s(X'''')))
DBL(x1) -> DBL(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
HALF(s(s(X))) -> HALF(X)
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
HALF(s(s(X))) -> HALF(X)
HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
HALF(s(s(s(s(X''))))) -> HALF(s(s(X'')))
HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 4
↳FwdInst
HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
HALF(s(s(s(s(s(s(X''''))))))) -> HALF(s(s(s(s(X'''')))))
HALF(x1) -> HALF(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 4
↳FwdInst
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
SQR(s(X)) -> SQR(X)
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
SQR(s(X)) -> SQR(X)
SQR(s(s(X''))) -> SQR(s(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 14
↳Forward Instantiation Transformation
SQR(s(s(X''))) -> SQR(s(X''))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
one new Dependency Pair is created:
SQR(s(s(X''))) -> SQR(s(X''))
SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 15
↳Argument Filtering and Ordering
SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost
SQR(s(s(s(X'''')))) -> SQR(s(s(X'''')))
SQR(x1) -> SQR(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 16
↳Dependency Graph
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X
innermost