Term Rewriting System R:
[X, L, X1, X2]
aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
AADX(cons(X, L)) -> MARK(X)
ANATS -> AADX(azeros)
ANATS -> AZEROS
AHEAD(cons(X, L)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(incr(X)) -> AINCR(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(adx(X)) -> AADX(mark(X))
MARK(adx(X)) -> MARK(X)
MARK(nats) -> ANATS
MARK(zeros) -> AZEROS
MARK(head(X)) -> AHEAD(mark(X))
MARK(head(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
ANATS -> AADX(azeros)
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
AINCR(cons(X, L)) -> MARK(X)


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

ANATS -> AADX(azeros)
two new Dependency Pairs are created:

ANATS -> AADX(cons(0, zeros))
ANATS -> AADX(zeros)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
ANATS -> AADX(cons(0, zeros))
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(X)) -> AINCR(mark(X))
MARK(s(X)) -> MARK(X)


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(incr(X)) -> AINCR(mark(X))
10 new Dependency Pairs are created:

MARK(incr(incr(X''))) -> AINCR(aincr(mark(X'')))
MARK(incr(adx(X''))) -> AINCR(aadx(mark(X'')))
MARK(incr(nats)) -> AINCR(anats)
MARK(incr(zeros)) -> AINCR(azeros)
MARK(incr(head(X''))) -> AINCR(ahead(mark(X'')))
MARK(incr(tail(X''))) -> AINCR(atail(mark(X'')))
MARK(incr(nil)) -> AINCR(nil)
MARK(incr(cons(X1', X2'))) -> AINCR(cons(mark(X1'), X2'))
MARK(incr(s(X''))) -> AINCR(s(mark(X'')))
MARK(incr(0)) -> AINCR(0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

MARK(incr(cons(X1', X2'))) -> AINCR(cons(mark(X1'), X2'))
MARK(incr(tail(X''))) -> AINCR(atail(mark(X'')))
MARK(incr(head(X''))) -> AINCR(ahead(mark(X'')))
MARK(incr(zeros)) -> AINCR(azeros)
MARK(incr(nats)) -> AINCR(anats)
MARK(incr(adx(X''))) -> AINCR(aadx(mark(X'')))
MARK(incr(incr(X''))) -> AINCR(aincr(mark(X'')))
MARK(s(X)) -> MARK(X)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
AADX(cons(X, L)) -> MARK(X)
ANATS -> AADX(cons(0, zeros))
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(X)) -> AADX(mark(X))
MARK(incr(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(adx(X)) -> AADX(mark(X))
10 new Dependency Pairs are created:

MARK(adx(incr(X''))) -> AADX(aincr(mark(X'')))
MARK(adx(adx(X''))) -> AADX(aadx(mark(X'')))
MARK(adx(nats)) -> AADX(anats)
MARK(adx(zeros)) -> AADX(azeros)
MARK(adx(head(X''))) -> AADX(ahead(mark(X'')))
MARK(adx(tail(X''))) -> AADX(atail(mark(X'')))
MARK(adx(nil)) -> AADX(nil)
MARK(adx(cons(X1', X2'))) -> AADX(cons(mark(X1'), X2'))
MARK(adx(s(X''))) -> AADX(s(mark(X'')))
MARK(adx(0)) -> AADX(0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Narrowing Transformation


Dependency Pairs:

MARK(adx(cons(X1', X2'))) -> AADX(cons(mark(X1'), X2'))
MARK(adx(tail(X''))) -> AADX(atail(mark(X'')))
MARK(adx(head(X''))) -> AADX(ahead(mark(X'')))
MARK(adx(zeros)) -> AADX(azeros)
MARK(adx(nats)) -> AADX(anats)
MARK(adx(adx(X''))) -> AADX(aadx(mark(X'')))
MARK(adx(incr(X''))) -> AADX(aincr(mark(X'')))
MARK(incr(tail(X''))) -> AINCR(atail(mark(X'')))
MARK(incr(head(X''))) -> AINCR(ahead(mark(X'')))
MARK(incr(zeros)) -> AINCR(azeros)
MARK(incr(nats)) -> AINCR(anats)
MARK(incr(adx(X''))) -> AINCR(aadx(mark(X'')))
MARK(incr(incr(X''))) -> AINCR(aincr(mark(X'')))
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(X)) -> AHEAD(mark(X))
AADX(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
ANATS -> AADX(cons(0, zeros))
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
MARK(incr(cons(X1', X2'))) -> AINCR(cons(mark(X1'), X2'))


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(head(X)) -> AHEAD(mark(X))
10 new Dependency Pairs are created:

MARK(head(incr(X''))) -> AHEAD(aincr(mark(X'')))
MARK(head(adx(X''))) -> AHEAD(aadx(mark(X'')))
MARK(head(nats)) -> AHEAD(anats)
MARK(head(zeros)) -> AHEAD(azeros)
MARK(head(head(X''))) -> AHEAD(ahead(mark(X'')))
MARK(head(tail(X''))) -> AHEAD(atail(mark(X'')))
MARK(head(nil)) -> AHEAD(nil)
MARK(head(cons(X1', X2'))) -> AHEAD(cons(mark(X1'), X2'))
MARK(head(s(X''))) -> AHEAD(s(mark(X'')))
MARK(head(0)) -> AHEAD(0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Narrowing Transformation


Dependency Pairs:

MARK(head(cons(X1', X2'))) -> AHEAD(cons(mark(X1'), X2'))
MARK(head(tail(X''))) -> AHEAD(atail(mark(X'')))
MARK(head(head(X''))) -> AHEAD(ahead(mark(X'')))
MARK(head(zeros)) -> AHEAD(azeros)
MARK(head(nats)) -> AHEAD(anats)
MARK(head(adx(X''))) -> AHEAD(aadx(mark(X'')))
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(incr(X''))) -> AHEAD(aincr(mark(X'')))
MARK(adx(tail(X''))) -> AADX(atail(mark(X'')))
MARK(adx(head(X''))) -> AADX(ahead(mark(X'')))
MARK(adx(zeros)) -> AADX(azeros)
MARK(adx(nats)) -> AADX(anats)
MARK(adx(adx(X''))) -> AADX(aadx(mark(X'')))
MARK(adx(incr(X''))) -> AADX(aincr(mark(X'')))
MARK(incr(cons(X1', X2'))) -> AINCR(cons(mark(X1'), X2'))
MARK(incr(tail(X''))) -> AINCR(atail(mark(X'')))
MARK(incr(head(X''))) -> AINCR(ahead(mark(X'')))
MARK(incr(zeros)) -> AINCR(azeros)
MARK(incr(nats)) -> AINCR(anats)
MARK(incr(adx(X''))) -> AINCR(aadx(mark(X'')))
MARK(incr(incr(X''))) -> AINCR(aincr(mark(X'')))
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(X)) -> ATAIL(mark(X))
MARK(head(X)) -> MARK(X)
AADX(cons(X, L)) -> MARK(X)
ANATS -> AADX(cons(0, zeros))
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
MARK(adx(cons(X1', X2'))) -> AADX(cons(mark(X1'), X2'))


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MARK(tail(X)) -> ATAIL(mark(X))
10 new Dependency Pairs are created:

MARK(tail(incr(X''))) -> ATAIL(aincr(mark(X'')))
MARK(tail(adx(X''))) -> ATAIL(aadx(mark(X'')))
MARK(tail(nats)) -> ATAIL(anats)
MARK(tail(zeros)) -> ATAIL(azeros)
MARK(tail(head(X''))) -> ATAIL(ahead(mark(X'')))
MARK(tail(tail(X''))) -> ATAIL(atail(mark(X'')))
MARK(tail(nil)) -> ATAIL(nil)
MARK(tail(cons(X1', X2'))) -> ATAIL(cons(mark(X1'), X2'))
MARK(tail(s(X''))) -> ATAIL(s(mark(X'')))
MARK(tail(0)) -> ATAIL(0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

MARK(tail(cons(X1', X2'))) -> ATAIL(cons(mark(X1'), X2'))
MARK(tail(tail(X''))) -> ATAIL(atail(mark(X'')))
MARK(tail(head(X''))) -> ATAIL(ahead(mark(X'')))
MARK(tail(zeros)) -> ATAIL(azeros)
MARK(tail(nats)) -> ATAIL(anats)
MARK(tail(adx(X''))) -> ATAIL(aadx(mark(X'')))
ATAIL(cons(X, L)) -> MARK(L)
MARK(tail(incr(X''))) -> ATAIL(aincr(mark(X'')))
MARK(head(tail(X''))) -> AHEAD(atail(mark(X'')))
MARK(head(head(X''))) -> AHEAD(ahead(mark(X'')))
MARK(head(zeros)) -> AHEAD(azeros)
MARK(head(nats)) -> AHEAD(anats)
MARK(head(adx(X''))) -> AHEAD(aadx(mark(X'')))
MARK(head(incr(X''))) -> AHEAD(aincr(mark(X'')))
MARK(adx(cons(X1', X2'))) -> AADX(cons(mark(X1'), X2'))
MARK(adx(tail(X''))) -> AADX(atail(mark(X'')))
MARK(adx(head(X''))) -> AADX(ahead(mark(X'')))
MARK(adx(zeros)) -> AADX(azeros)
MARK(adx(nats)) -> AADX(anats)
MARK(adx(adx(X''))) -> AADX(aadx(mark(X'')))
AADX(cons(X, L)) -> MARK(X)
MARK(adx(incr(X''))) -> AADX(aincr(mark(X'')))
MARK(incr(cons(X1', X2'))) -> AINCR(cons(mark(X1'), X2'))
MARK(incr(tail(X''))) -> AINCR(atail(mark(X'')))
MARK(incr(head(X''))) -> AINCR(ahead(mark(X'')))
MARK(incr(zeros)) -> AINCR(azeros)
MARK(incr(nats)) -> AINCR(anats)
MARK(incr(adx(X''))) -> AINCR(aadx(mark(X'')))
MARK(incr(incr(X''))) -> AINCR(aincr(mark(X'')))
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
MARK(head(X)) -> MARK(X)
AINCR(cons(X, L)) -> MARK(X)
AADX(cons(X, L)) -> AINCR(cons(mark(X), adx(L)))
ANATS -> AADX(cons(0, zeros))
MARK(nats) -> ANATS
MARK(adx(X)) -> MARK(X)
MARK(incr(X)) -> MARK(X)
AHEAD(cons(X, L)) -> MARK(X)
MARK(head(cons(X1', X2'))) -> AHEAD(cons(mark(X1'), X2'))


Rules:


aincr(nil) -> nil
aincr(cons(X, L)) -> cons(s(mark(X)), incr(L))
aincr(X) -> incr(X)
aadx(nil) -> nil
aadx(cons(X, L)) -> aincr(cons(mark(X), adx(L)))
aadx(X) -> adx(X)
anats -> aadx(azeros)
anats -> nats
azeros -> cons(0, zeros)
azeros -> zeros
ahead(cons(X, L)) -> mark(X)
ahead(X) -> head(X)
atail(cons(X, L)) -> mark(L)
atail(X) -> tail(X)
mark(incr(X)) -> aincr(mark(X))
mark(adx(X)) -> aadx(mark(X))
mark(nats) -> anats
mark(zeros) -> azeros
mark(head(X)) -> ahead(mark(X))
mark(tail(X)) -> atail(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:27 minutes