R
↳Dependency Pair Analysis
ACTIVE(incr(cons(X, L))) -> CONS(s(X), incr(L))
ACTIVE(incr(cons(X, L))) -> S(X)
ACTIVE(incr(cons(X, L))) -> INCR(L)
ACTIVE(adx(cons(X, L))) -> INCR(cons(X, adx(L)))
ACTIVE(adx(cons(X, L))) -> CONS(X, adx(L))
ACTIVE(adx(cons(X, L))) -> ADX(L)
ACTIVE(nats) -> ADX(zeros)
ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(incr(X)) -> INCR(active(X))
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ADX(active(X))
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> HEAD(active(X))
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(tail(X)) -> TAIL(active(X))
ACTIVE(tail(X)) -> ACTIVE(X)
INCR(mark(X)) -> INCR(X)
INCR(ok(X)) -> INCR(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
ADX(mark(X)) -> ADX(X)
ADX(ok(X)) -> ADX(X)
HEAD(mark(X)) -> HEAD(X)
HEAD(ok(X)) -> HEAD(X)
TAIL(mark(X)) -> TAIL(X)
TAIL(ok(X)) -> TAIL(X)
PROPER(incr(X)) -> INCR(proper(X))
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(adx(X)) -> ADX(proper(X))
PROPER(adx(X)) -> PROPER(X)
PROPER(head(X)) -> HEAD(proper(X))
PROPER(head(X)) -> PROPER(X)
PROPER(tail(X)) -> TAIL(proper(X))
PROPER(tail(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
HEAD(ok(X)) -> HEAD(X)
HEAD(mark(X)) -> HEAD(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
HEAD(ok(X)) -> HEAD(X)
HEAD(mark(X)) -> HEAD(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
TAIL(ok(X)) -> TAIL(X)
TAIL(mark(X)) -> TAIL(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 15
↳Size-Change Principle
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
TAIL(ok(X)) -> TAIL(X)
TAIL(mark(X)) -> TAIL(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(tail(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(incr(X)) -> ACTIVE(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 16
↳Size-Change Principle
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(tail(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(incr(X)) -> ACTIVE(X)
none
innermost
|
|
trivial
adx(x1) -> adx(x1)
cons(x1, x2) -> cons(x1, x2)
tail(x1) -> tail(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
head(x1) -> head(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳Usable Rules (Innermost)
→DP Problem 9
↳UsableRules
PROPER(tail(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(adx(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(incr(X)) -> PROPER(X)
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 17
↳Size-Change Principle
→DP Problem 9
↳UsableRules
PROPER(tail(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(adx(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(incr(X)) -> PROPER(X)
none
innermost
|
|
trivial
adx(x1) -> adx(x1)
cons(x1, x2) -> cons(x1, x2)
tail(x1) -> tail(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
head(x1) -> head(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
POL(proper(x1)) = x1 POL(adx(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1 POL(active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 1 POL(nil) = 0 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1
active(nats) -> mark(adx(zeros))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 19
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(cons(X1, X2)) -> cons(active(X1), X2)
cons(mark(X1), X2) -> mark(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
active(incr(nil)) -> mark(nil)
tail(ok(X)) -> ok(tail(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
head(mark(X)) -> mark(head(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(ok(X)) -> ok(head(X))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
incr(ok(X)) -> ok(incr(X))
active(zeros) -> mark(cons(0, zeros))
s(ok(X)) -> ok(s(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
s(mark(X)) -> mark(s(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
POL(proper(x1)) = x1 POL(adx(x1)) = x1 POL(tail(x1)) = 1 + x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1 POL(active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1
active(tail(cons(X, L))) -> mark(L)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 20
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
incr(ok(X)) -> ok(incr(X))
active(adx(X)) -> adx(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
active(zeros) -> mark(cons(0, zeros))
s(ok(X)) -> ok(s(X))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
adx(mark(X)) -> mark(adx(X))
active(adx(nil)) -> mark(nil)
incr(mark(X)) -> mark(incr(X))
adx(ok(X)) -> ok(adx(X))
active(incr(nil)) -> mark(nil)
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
s(mark(X)) -> mark(s(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(ok(X)) -> ok(head(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
POL(proper(x1)) = x1 POL(adx(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = 1 + x1
active(head(cons(X, L))) -> mark(X)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 21
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
incr(ok(X)) -> ok(incr(X))
incr(mark(X)) -> mark(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
incr(ok(X)) -> ok(incr(X))
active(adx(X)) -> adx(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
active(zeros) -> mark(cons(0, zeros))
s(ok(X)) -> ok(s(X))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
adx(mark(X)) -> mark(adx(X))
active(adx(nil)) -> mark(nil)
incr(mark(X)) -> mark(incr(X))
adx(ok(X)) -> ok(adx(X))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
s(mark(X)) -> mark(s(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(ok(X)) -> ok(head(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
POL(proper(x1)) = x1 POL(adx(x1)) = 1 + x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nats) = 0 POL(nil) = 0 POL(s(x1)) = x1 POL(zeros) = 0 POL(head(x1)) = x1
active(adx(nil)) -> mark(nil)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 22
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
incr(ok(X)) -> ok(incr(X))
incr(mark(X)) -> mark(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
incr(ok(X)) -> ok(incr(X))
active(adx(X)) -> adx(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
active(zeros) -> mark(cons(0, zeros))
s(ok(X)) -> ok(s(X))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
adx(mark(X)) -> mark(adx(X))
incr(mark(X)) -> mark(incr(X))
adx(ok(X)) -> ok(adx(X))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
s(mark(X)) -> mark(s(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(ok(X)) -> ok(head(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
adx > incr > mark
zeros > mark
zeros > 0
TOP(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
head(x1) -> x1
cons(x1, x2) -> x1
adx(x1) -> adx(x1)
incr(x1) -> incr(x1)
mark(x1) -> mark(x1)
s(x1) -> x1
tail(x1) -> x1
proper(x1) -> x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 23
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
incr(ok(X)) -> ok(incr(X))
incr(mark(X)) -> mark(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nats) -> ok(nats)
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(0) -> ok(0)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳MRR
...
→DP Problem 24
↳Modular Removal of Rules
TOP(ok(X)) -> TOP(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
incr(ok(X)) -> ok(incr(X))
incr(mark(X)) -> mark(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
active(cons(X1, X2)) -> cons(active(X1), X2)
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(tail(X)) -> tail(active(X))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(nil)) -> mark(nil)
active(incr(X)) -> incr(active(X))
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
incr(ok(X)) -> ok(incr(X))
incr(mark(X)) -> mark(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
POL(adx(x1)) = x1 POL(tail(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = 1 + x1 POL(active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(nil) = 0 POL(s(x1)) = x1 POL(head(x1)) = x1 POL(zeros) = 0
TOP(ok(X)) -> TOP(active(X))
Innermost Termination of R successfully shown.
Duration:
0:36 minutes