Term Rewriting System R:
[X]
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MARK(f(X)) -> AF(mark(X))
MARK(f(X)) -> MARK(X)
MARK(h(X)) -> MARK(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pairs:
MARK(h(X)) -> MARK(X)
MARK(f(X)) -> MARK(X)
Rules:
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Strategy:
innermost
The following dependency pair can be strictly oriented:
MARK(h(X)) -> MARK(X)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(MARK(x1)) | = x1 |
POL(h(x1)) | = 1 + x1 |
POL(f(x1)) | = x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
Dependency Pair:
MARK(f(X)) -> MARK(X)
Rules:
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Strategy:
innermost
The following dependency pair can be strictly oriented:
MARK(f(X)) -> MARK(X)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(MARK(x1)) | = x1 |
POL(f(x1)) | = 1 + x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
Dependency Pair:
Rules:
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes