Term Rewriting System R:
[X]
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MARK(f(X)) -> AF(mark(X))
MARK(f(X)) -> MARK(X)
MARK(h(X)) -> MARK(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pairs:
MARK(h(X)) -> MARK(X)
MARK(f(X)) -> MARK(X)
Rules:
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Strategy:
innermost
The following dependency pairs can be strictly oriented:
MARK(h(X)) -> MARK(X)
MARK(f(X)) -> MARK(X)
There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: MARK(x1) -> MARK(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
af(X) -> g(h(f(X)))
af(X) -> f(X)
mark(f(X)) -> af(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes