Term Rewriting System R:
[X]
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVATE(nh(X)) -> H(activate(X))
ACTIVATE(nh(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pairs:
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)
Rules:
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
Strategy:
innermost
The following dependency pairs can be strictly oriented:
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)
There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: ACTIVATE(x1) -> ACTIVATE(x1)
nh(x1) -> nh(x1)
nf(x1) -> nf(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes