Term Rewriting System R:
[X]
f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVATE(nh(X)) -> H(activate(X))
ACTIVATE(nh(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nh(X)) -> ACTIVATE(X)


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nh(X)) -> ACTIVATE(X)
two new Dependency Pairs are created:

ACTIVATE(nh(nh(X''))) -> ACTIVATE(nh(X''))
ACTIVATE(nh(nf(X''))) -> ACTIVATE(nf(X''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nh(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nh(nh(X''))) -> ACTIVATE(nh(X''))
ACTIVATE(nf(X)) -> ACTIVATE(X)


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nf(X)) -> ACTIVATE(X)
three new Dependency Pairs are created:

ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 3
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(X''))) -> ACTIVATE(nh(X''))
ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nh(nf(X''))) -> ACTIVATE(nf(X''))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nh(nh(X''))) -> ACTIVATE(nh(X''))
two new Dependency Pairs are created:

ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 4
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nh(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nh(nf(X''))) -> ACTIVATE(nf(X''))
three new Dependency Pairs are created:

ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 5
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
three new Dependency Pairs are created:

ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 6
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nf(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nf(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
two new Dependency Pairs are created:

ACTIVATE(nf(nh(nh(nh(X''''''))))) -> ACTIVATE(nh(nh(nh(X''''''))))
ACTIVATE(nf(nh(nh(nf(X''''''))))) -> ACTIVATE(nh(nh(nf(X''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 7
Forward Instantiation Transformation


Dependency Pairs:

ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))
ACTIVATE(nf(nh(nh(nf(X''''''))))) -> ACTIVATE(nh(nh(nf(X''''''))))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(nh(X''''''))))) -> ACTIVATE(nh(nh(nh(X''''''))))
ACTIVATE(nf(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nf(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nf(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
three new Dependency Pairs are created:

ACTIVATE(nf(nh(nf(nf(X''''''))))) -> ACTIVATE(nh(nf(nf(X''''''))))
ACTIVATE(nf(nh(nf(nh(nh(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nh(X'''''''')))))
ACTIVATE(nf(nh(nf(nh(nf(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nf(X'''''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 8
Argument Filtering and Ordering


Dependency Pairs:

ACTIVATE(nf(nh(nf(nh(nf(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nf(X'''''''')))))
ACTIVATE(nf(nh(nf(nh(nh(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nh(X'''''''')))))
ACTIVATE(nf(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))
ACTIVATE(nf(nh(nh(nf(X''''''))))) -> ACTIVATE(nh(nh(nf(X''''''))))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(nh(X''''''))))) -> ACTIVATE(nh(nh(nh(X''''''))))
ACTIVATE(nf(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nh(nf(nf(X''''''))))) -> ACTIVATE(nh(nf(nf(X''''''))))
ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVATE(nf(nh(nf(nh(nf(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nf(X'''''''')))))
ACTIVATE(nf(nh(nf(nh(nh(X'''''''')))))) -> ACTIVATE(nh(nf(nh(nh(X'''''''')))))
ACTIVATE(nf(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))
ACTIVATE(nf(nh(nh(nf(X''''''))))) -> ACTIVATE(nh(nh(nf(X''''''))))
ACTIVATE(nh(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nh(nh(nf(X'''')))) -> ACTIVATE(nh(nf(X'''')))
ACTIVATE(nh(nh(nh(X'''')))) -> ACTIVATE(nh(nh(X'''')))
ACTIVATE(nf(nh(nh(nh(X''''''))))) -> ACTIVATE(nh(nh(nh(X''''''))))
ACTIVATE(nf(nf(nh(nh(X''''''))))) -> ACTIVATE(nf(nh(nh(X''''''))))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nh(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nh(nf(nf(X''''''))))) -> ACTIVATE(nh(nf(nf(X''''''))))
ACTIVATE(nh(nf(nh(nf(X''''''))))) -> ACTIVATE(nf(nh(nf(X''''''))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
nh(x1) -> nh(x1)
nf(x1) -> nf(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
FwdInst
             ...
               →DP Problem 9
Dependency Graph


Dependency Pair:


Rules:


f(X) -> g(nh(nf(X)))
f(X) -> nf(X)
h(X) -> nh(X)
activate(nh(X)) -> h(activate(X))
activate(nf(X)) -> f(activate(X))
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes