R
↳Dependency Pair Analysis
ACTIVE(f(X)) -> G(h(f(X)))
ACTIVE(f(X)) -> H(f(X))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(h(X)) -> H(active(X))
ACTIVE(h(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
H(mark(X)) -> H(X)
H(ok(X)) -> H(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
G(ok(X)) -> G(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(X)) -> G(X)
G(ok(ok(X''))) -> G(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
G(ok(ok(X''))) -> G(ok(X''))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(ok(X''))) -> G(ok(X''))
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
POL(G(x1)) = 1 + x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
F(mark(X)) -> F(X)
F(mark(mark(X''))) -> F(mark(X''))
F(mark(ok(X''))) -> F(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(ok(X''))) -> F(ok(X''))
F(mark(mark(X''))) -> F(mark(X''))
F(ok(X)) -> F(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
F(ok(X)) -> F(X)
F(ok(ok(X''))) -> F(ok(X''))
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(X''))) -> F(mark(X''))
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(ok(X''))) -> F(ok(X''))
F(mark(ok(X''))) -> F(ok(X''))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
F(mark(mark(X''))) -> F(mark(X''))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(ok(X''))) -> F(ok(X''))
F(mark(ok(X''))) -> F(ok(X''))
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
F(mark(ok(X''))) -> F(ok(X''))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(ok(X''))) -> F(ok(X''))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
F(ok(ok(X''))) -> F(ok(X''))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(ok(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(ok(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
F(ok(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(mark(X''''''))))) -> F(mark(mark(mark(X''''''))))
F(ok(mark(mark(ok(X''''''))))) -> F(mark(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
F(ok(mark(mark(ok(X''''''))))) -> F(mark(mark(ok(X''''''))))
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(mark(X''''''))))) -> F(mark(mark(mark(X''''''))))
F(ok(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(ok(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
F(ok(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(ok(mark(ok(ok(X''''''))))) -> F(mark(ok(ok(X''''''))))
F(ok(mark(ok(mark(mark(X'''''''')))))) -> F(mark(ok(mark(mark(X'''''''')))))
F(ok(mark(ok(mark(ok(X'''''''')))))) -> F(mark(ok(mark(ok(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 16
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(ok(mark(ok(mark(ok(X'''''''')))))) -> F(mark(ok(mark(ok(X'''''''')))))
F(ok(mark(ok(mark(mark(X'''''''')))))) -> F(mark(ok(mark(mark(X'''''''')))))
F(ok(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
F(ok(mark(mark(ok(X''''''))))) -> F(mark(mark(ok(X''''''))))
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(ok(mark(mark(mark(X''''''))))) -> F(mark(mark(mark(X''''''))))
F(ok(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(ok(mark(ok(ok(X''''''))))) -> F(mark(ok(ok(X''''''))))
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(mark(ok(mark(ok(X'''''''')))))) -> F(mark(ok(mark(ok(X'''''''')))))
F(ok(mark(ok(mark(mark(X'''''''')))))) -> F(mark(ok(mark(mark(X'''''''')))))
F(ok(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
F(ok(mark(mark(ok(X''''''))))) -> F(mark(mark(ok(X''''''))))
F(ok(mark(mark(mark(X''''''))))) -> F(mark(mark(mark(X''''''))))
F(ok(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(ok(mark(ok(ok(X''''''))))) -> F(mark(ok(ok(X''''''))))
POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 17
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(ok(mark(mark(X''''''))))) -> F(ok(mark(mark(X''''''))))
F(mark(mark(ok(X'''')))) -> F(mark(ok(X'''')))
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
F(mark(ok(ok(X'''')))) -> F(ok(ok(X'''')))
F(mark(ok(mark(ok(X''''''))))) -> F(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 18
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(mark(mark(mark(X'''')))) -> F(mark(mark(X'''')))
POL(mark(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 19
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(ok(X)) -> H(X)
H(mark(X)) -> H(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
H(mark(X)) -> H(X)
H(mark(mark(X''))) -> H(mark(X''))
H(mark(ok(X''))) -> H(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(ok(X''))) -> H(ok(X''))
H(mark(mark(X''))) -> H(mark(X''))
H(ok(X)) -> H(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
H(ok(X)) -> H(X)
H(ok(ok(X''))) -> H(ok(X''))
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 21
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(X''))) -> H(mark(X''))
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(ok(X''))) -> H(ok(X''))
H(mark(ok(X''))) -> H(ok(X''))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
H(mark(mark(X''))) -> H(mark(X''))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 22
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(ok(X''))) -> H(ok(X''))
H(mark(ok(X''))) -> H(ok(X''))
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
H(mark(ok(X''))) -> H(ok(X''))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 23
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(ok(X''))) -> H(ok(X''))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
H(ok(ok(X''))) -> H(ok(X''))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(ok(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 24
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(ok(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
H(ok(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(mark(X''''''))))) -> H(mark(mark(mark(X''''''))))
H(ok(mark(mark(ok(X''''''))))) -> H(mark(mark(ok(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 25
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
H(ok(mark(mark(ok(X''''''))))) -> H(mark(mark(ok(X''''''))))
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(mark(X''''''))))) -> H(mark(mark(mark(X''''''))))
H(ok(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(ok(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
H(ok(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(ok(mark(ok(ok(X''''''))))) -> H(mark(ok(ok(X''''''))))
H(ok(mark(ok(mark(mark(X'''''''')))))) -> H(mark(ok(mark(mark(X'''''''')))))
H(ok(mark(ok(mark(ok(X'''''''')))))) -> H(mark(ok(mark(ok(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 26
↳Polynomial Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(ok(mark(ok(mark(ok(X'''''''')))))) -> H(mark(ok(mark(ok(X'''''''')))))
H(ok(mark(ok(mark(mark(X'''''''')))))) -> H(mark(ok(mark(mark(X'''''''')))))
H(ok(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
H(ok(mark(mark(ok(X''''''))))) -> H(mark(mark(ok(X''''''))))
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(ok(mark(mark(mark(X''''''))))) -> H(mark(mark(mark(X''''''))))
H(ok(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(ok(mark(ok(ok(X''''''))))) -> H(mark(ok(ok(X''''''))))
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
H(ok(mark(ok(mark(ok(X'''''''')))))) -> H(mark(ok(mark(ok(X'''''''')))))
H(ok(mark(ok(mark(mark(X'''''''')))))) -> H(mark(ok(mark(mark(X'''''''')))))
H(ok(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
H(ok(mark(mark(ok(X''''''))))) -> H(mark(mark(ok(X''''''))))
H(ok(mark(mark(mark(X''''''))))) -> H(mark(mark(mark(X''''''))))
H(ok(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(ok(mark(ok(ok(X''''''))))) -> H(mark(ok(ok(X''''''))))
POL(mark(x1)) = x1 POL(H(x1)) = 1 + x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 27
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(ok(mark(mark(X''''''))))) -> H(ok(mark(mark(X''''''))))
H(mark(mark(ok(X'''')))) -> H(mark(ok(X'''')))
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
H(mark(ok(ok(X'''')))) -> H(ok(ok(X'''')))
H(mark(ok(mark(ok(X''''''))))) -> H(ok(mark(ok(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 28
↳Polynomial Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
H(mark(mark(mark(X'''')))) -> H(mark(mark(X'''')))
POL(mark(x1)) = 1 + x1 POL(H(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 20
↳FwdInst
...
→DP Problem 29
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(h(X)) -> ACTIVE(X)
ACTIVE(f(X)) -> ACTIVE(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(f(f(X''))) -> ACTIVE(f(X''))
ACTIVE(f(h(X''))) -> ACTIVE(h(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(h(X''))) -> ACTIVE(h(X''))
ACTIVE(f(f(X''))) -> ACTIVE(f(X''))
ACTIVE(h(X)) -> ACTIVE(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
ACTIVE(h(X)) -> ACTIVE(X)
ACTIVE(h(h(X''))) -> ACTIVE(h(X''))
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 31
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(X''))) -> ACTIVE(f(X''))
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(h(X''))) -> ACTIVE(h(X''))
ACTIVE(f(h(X''))) -> ACTIVE(h(X''))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
ACTIVE(f(f(X''))) -> ACTIVE(f(X''))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 32
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(h(X''))) -> ACTIVE(h(X''))
ACTIVE(f(h(X''))) -> ACTIVE(h(X''))
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
ACTIVE(f(h(X''))) -> ACTIVE(h(X''))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 33
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(h(X''))) -> ACTIVE(h(X''))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
ACTIVE(h(h(X''))) -> ACTIVE(h(X''))
ACTIVE(h(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(h(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 34
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(h(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
ACTIVE(h(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(f(X''''''))))) -> ACTIVE(f(f(f(X''''''))))
ACTIVE(h(f(f(h(X''''''))))) -> ACTIVE(f(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 35
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
ACTIVE(h(f(f(h(X''''''))))) -> ACTIVE(f(f(h(X''''''))))
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(f(X''''''))))) -> ACTIVE(f(f(f(X''''''))))
ACTIVE(h(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(h(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
ACTIVE(h(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(h(f(h(h(X''''''))))) -> ACTIVE(f(h(h(X''''''))))
ACTIVE(h(f(h(f(f(X'''''''')))))) -> ACTIVE(f(h(f(f(X'''''''')))))
ACTIVE(h(f(h(f(h(X'''''''')))))) -> ACTIVE(f(h(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 36
↳Polynomial Ordering
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(h(f(h(f(h(X'''''''')))))) -> ACTIVE(f(h(f(h(X'''''''')))))
ACTIVE(h(f(h(f(f(X'''''''')))))) -> ACTIVE(f(h(f(f(X'''''''')))))
ACTIVE(h(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
ACTIVE(h(f(f(h(X''''''))))) -> ACTIVE(f(f(h(X''''''))))
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(h(f(f(f(X''''''))))) -> ACTIVE(f(f(f(X''''''))))
ACTIVE(h(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(h(f(h(h(X''''''))))) -> ACTIVE(f(h(h(X''''''))))
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(h(f(h(f(h(X'''''''')))))) -> ACTIVE(f(h(f(h(X'''''''')))))
ACTIVE(h(f(h(f(f(X'''''''')))))) -> ACTIVE(f(h(f(f(X'''''''')))))
ACTIVE(h(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
ACTIVE(h(f(f(h(X''''''))))) -> ACTIVE(f(f(h(X''''''))))
ACTIVE(h(f(f(f(X''''''))))) -> ACTIVE(f(f(f(X''''''))))
ACTIVE(h(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(h(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(h(f(h(h(X''''''))))) -> ACTIVE(f(h(h(X''''''))))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(ACTIVE(x1)) = 1 + x1 POL(h(x1)) = 1 + x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 37
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(h(f(f(X''''''))))) -> ACTIVE(h(f(f(X''''''))))
ACTIVE(f(f(h(X'''')))) -> ACTIVE(f(h(X'''')))
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
ACTIVE(f(h(h(X'''')))) -> ACTIVE(h(h(X'''')))
ACTIVE(f(h(f(h(X''''''))))) -> ACTIVE(h(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 38
↳Polynomial Ordering
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(f(f(f(X'''')))) -> ACTIVE(f(f(X'''')))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(ACTIVE(x1)) = 1 + x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 30
↳FwdInst
...
→DP Problem 39
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(f(X)) -> PROPER(X)
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(h(X''))) -> PROPER(h(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(f(h(X''))) -> PROPER(h(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> PROPER(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(g(X)) -> PROPER(X)
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 41
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(h(X)) -> PROPER(X)
PROPER(f(h(X''))) -> PROPER(h(X''))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(h(X)) -> PROPER(X)
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 42
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(X''))) -> PROPER(h(X''))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 43
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(X''))) -> PROPER(h(X''))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 44
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(h(X''))) -> PROPER(h(X''))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(f(h(X''))) -> PROPER(h(X''))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 45
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 46
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 47
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 48
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 49
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(g(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 50
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 51
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(h(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 52
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(h(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 53
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(h(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 54
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 55
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 56
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(h(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(f(f(f(X'''''''')))))) -> PROPER(g(f(f(f(X'''''''')))))
PROPER(h(g(f(f(g(X'''''''')))))) -> PROPER(g(f(f(g(X'''''''')))))
PROPER(h(g(f(f(h(X'''''''')))))) -> PROPER(g(f(f(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 57
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(h(X'''''''')))))) -> PROPER(g(f(f(h(X'''''''')))))
PROPER(h(g(f(f(g(X'''''''')))))) -> PROPER(g(f(f(g(X'''''''')))))
PROPER(h(g(f(f(f(X'''''''')))))) -> PROPER(g(f(f(f(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
PROPER(h(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(f(g(g(X'''''''')))))) -> PROPER(g(f(g(g(X'''''''')))))
PROPER(h(g(f(g(h(X'''''''')))))) -> PROPER(g(f(g(h(X'''''''')))))
PROPER(h(g(f(g(f(f(X''''''''''))))))) -> PROPER(g(f(g(f(f(X''''''''''))))))
PROPER(h(g(f(g(f(g(X''''''''''))))))) -> PROPER(g(f(g(f(g(X''''''''''))))))
PROPER(h(g(f(g(f(h(X''''''''''))))))) -> PROPER(g(f(g(f(h(X''''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 58
↳Forward Instantiation Transformation
→DP Problem 6
↳Nar
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(h(X''''''''''))))))) -> PROPER(g(f(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(g(X''''''''''))))))) -> PROPER(g(f(g(f(g(X''''''''''))))))
PROPER(h(g(f(g(f(f(X''''''''''))))))) -> PROPER(g(f(g(f(f(X''''''''''))))))
PROPER(h(g(f(g(h(X'''''''')))))) -> PROPER(g(f(g(h(X'''''''')))))
PROPER(h(g(f(g(g(X'''''''')))))) -> PROPER(g(f(g(g(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(h(X'''''''')))))) -> PROPER(g(f(f(h(X'''''''')))))
PROPER(h(g(f(f(g(X'''''''')))))) -> PROPER(g(f(f(g(X'''''''')))))
PROPER(h(g(f(f(f(X'''''''')))))) -> PROPER(g(f(f(f(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
nine new Dependency Pairs are created:
PROPER(h(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(f(h(h(X'''''''')))))) -> PROPER(g(f(h(h(X'''''''')))))
PROPER(h(g(f(h(f(f(X''''''''''))))))) -> PROPER(g(f(h(f(f(X''''''''''))))))
PROPER(h(g(f(h(f(g(X''''''''''))))))) -> PROPER(g(f(h(f(g(X''''''''''))))))
PROPER(h(g(f(h(f(h(X''''''''''))))))) -> PROPER(g(f(h(f(h(X''''''''''))))))
PROPER(h(g(f(h(g(g(X''''''''''))))))) -> PROPER(g(f(h(g(g(X''''''''''))))))
PROPER(h(g(f(h(g(h(X''''''''''))))))) -> PROPER(g(f(h(g(h(X''''''''''))))))
PROPER(h(g(f(h(g(f(f(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(f(X'''''''''''')))))))
PROPER(h(g(f(h(g(f(g(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(g(X'''''''''''')))))))
PROPER(h(g(f(h(g(f(h(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(h(X'''''''''''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 59
↳Polynomial Ordering
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(h(g(f(h(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(h(X'''''''''''')))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(h(g(f(g(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(g(X'''''''''''')))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(g(f(h(g(f(f(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(f(X'''''''''''')))))))
PROPER(h(g(f(h(g(h(X''''''''''))))))) -> PROPER(g(f(h(g(h(X''''''''''))))))
PROPER(h(g(f(h(g(g(X''''''''''))))))) -> PROPER(g(f(h(g(g(X''''''''''))))))
PROPER(h(g(f(h(f(h(X''''''''''))))))) -> PROPER(g(f(h(f(h(X''''''''''))))))
PROPER(h(g(f(h(f(g(X''''''''''))))))) -> PROPER(g(f(h(f(g(X''''''''''))))))
PROPER(h(g(f(h(f(f(X''''''''''))))))) -> PROPER(g(f(h(f(f(X''''''''''))))))
PROPER(h(g(f(h(h(X'''''''')))))) -> PROPER(g(f(h(h(X'''''''')))))
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(h(X''''''''''))))))) -> PROPER(g(f(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(g(X''''''''''))))))) -> PROPER(g(f(g(f(g(X''''''''''))))))
PROPER(h(g(f(g(f(f(X''''''''''))))))) -> PROPER(g(f(g(f(f(X''''''''''))))))
PROPER(h(g(f(g(h(X'''''''')))))) -> PROPER(g(f(g(h(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(h(X'''''''')))))) -> PROPER(g(f(f(h(X'''''''')))))
PROPER(h(g(f(f(g(X'''''''')))))) -> PROPER(g(f(f(g(X'''''''')))))
PROPER(h(g(f(f(f(X'''''''')))))) -> PROPER(g(f(f(f(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(g(X'''''''')))))) -> PROPER(g(f(g(g(X'''''''')))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(f(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(f(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(f(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(f(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(f(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(f(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(f(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(f(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(f(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(f(f(h(X'''')))) -> PROPER(f(h(X'''')))
PROPER(f(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(g(x1)) = x1 POL(PROPER(x1)) = 1 + x1 POL(h(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 60
↳Dependency Graph
→DP Problem 6
↳Nar
PROPER(h(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(g(h(g(f(h(X'''''''')))))) -> PROPER(h(g(f(h(X'''''''')))))
PROPER(h(g(h(g(f(h(X''''''''''))))))) -> PROPER(g(h(g(f(h(X''''''''''))))))
PROPER(g(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
PROPER(h(g(h(g(f(g(X''''''''''))))))) -> PROPER(g(h(g(f(g(X''''''''''))))))
PROPER(g(h(g(f(f(X'''''''')))))) -> PROPER(h(g(f(f(X'''''''')))))
PROPER(h(g(h(g(f(f(X''''''''''))))))) -> PROPER(g(h(g(f(f(X''''''''''))))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(g(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(h(g(f(h(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(h(X'''''''''''')))))))
PROPER(g(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(h(g(f(g(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(g(X'''''''''''')))))))
PROPER(g(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(g(f(h(g(f(f(X'''''''''''')))))))) -> PROPER(g(f(h(g(f(f(X'''''''''''')))))))
PROPER(h(g(f(h(g(h(X''''''''''))))))) -> PROPER(g(f(h(g(h(X''''''''''))))))
PROPER(h(g(f(h(g(g(X''''''''''))))))) -> PROPER(g(f(h(g(g(X''''''''''))))))
PROPER(h(g(f(h(f(h(X''''''''''))))))) -> PROPER(g(f(h(f(h(X''''''''''))))))
PROPER(h(g(f(h(f(g(X''''''''''))))))) -> PROPER(g(f(h(f(g(X''''''''''))))))
PROPER(h(g(f(h(f(f(X''''''''''))))))) -> PROPER(g(f(h(f(f(X''''''''''))))))
PROPER(h(g(f(h(h(X'''''''')))))) -> PROPER(g(f(h(h(X'''''''')))))
PROPER(h(f(h(g(f(h(X''''''''''))))))) -> PROPER(f(h(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(h(X''''''''''))))))) -> PROPER(g(f(g(f(h(X''''''''''))))))
PROPER(h(g(f(g(f(g(X''''''''''))))))) -> PROPER(g(f(g(f(g(X''''''''''))))))
PROPER(h(g(f(g(f(f(X''''''''''))))))) -> PROPER(g(f(g(f(f(X''''''''''))))))
PROPER(h(g(f(g(h(X'''''''')))))) -> PROPER(g(f(g(h(X'''''''')))))
PROPER(h(f(h(g(f(g(X''''''''''))))))) -> PROPER(f(h(g(f(g(X''''''''''))))))
PROPER(h(g(f(f(h(X'''''''')))))) -> PROPER(g(f(f(h(X'''''''')))))
PROPER(h(g(f(f(g(X'''''''')))))) -> PROPER(g(f(f(g(X'''''''')))))
PROPER(h(g(f(f(f(X'''''''')))))) -> PROPER(g(f(f(f(X'''''''')))))
PROPER(h(f(h(g(f(f(X''''''''''))))))) -> PROPER(f(h(g(f(f(X''''''''''))))))
PROPER(h(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(h(f(h(X''''''))))) -> PROPER(h(f(h(X''''''))))
PROPER(h(g(h(f(h(X'''''''')))))) -> PROPER(g(h(f(h(X'''''''')))))
PROPER(g(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(g(h(f(g(X'''''''')))))) -> PROPER(g(h(f(g(X'''''''')))))
PROPER(h(g(h(f(f(X'''''''')))))) -> PROPER(g(h(f(f(X'''''''')))))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(g(f(h(g(h(X'''''''')))))) -> PROPER(f(h(g(h(X'''''''')))))
PROPER(g(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(g(g(f(h(X''''''))))) -> PROPER(g(f(h(X''''''))))
PROPER(h(g(g(f(h(X'''''''')))))) -> PROPER(g(g(f(h(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(h(g(g(f(g(X'''''''')))))) -> PROPER(g(g(f(g(X'''''''')))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(h(g(g(f(f(X'''''''')))))) -> PROPER(g(g(f(f(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(f(h(g(g(X'''''''')))))) -> PROPER(f(h(g(g(X'''''''')))))
PROPER(h(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(h(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(h(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(g(f(h(f(h(X'''''''')))))) -> PROPER(f(h(f(h(X'''''''')))))
PROPER(h(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(h(f(g(X'''''''')))))) -> PROPER(f(h(f(g(X'''''''')))))
PROPER(g(f(h(f(f(X'''''''')))))) -> PROPER(f(h(f(f(X'''''''')))))
PROPER(g(f(h(h(X''''''))))) -> PROPER(f(h(h(X''''''))))
PROPER(g(f(g(f(h(X'''''''')))))) -> PROPER(f(g(f(h(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(h(f(g(h(X''''''))))) -> PROPER(f(g(h(X''''''))))
PROPER(h(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(h(f(g(X''''''))))) -> PROPER(h(f(g(X''''''))))
PROPER(h(f(f(h(X''''''))))) -> PROPER(f(f(h(X''''''))))
PROPER(h(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(g(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(h(h(f(f(X''''''))))) -> PROPER(h(f(f(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(h(g(f(g(g(X'''''''')))))) -> PROPER(g(f(g(g(X'''''''')))))
PROPER(h(h(g(f(g(X'''''''')))))) -> PROPER(h(g(f(g(X'''''''')))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 61
↳Polynomial Ordering
→DP Problem 6
↳Nar
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
POL(g(x1)) = 1 + x1 POL(PROPER(x1)) = 1 + x1 POL(h(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 62
↳Dependency Graph
→DP Problem 6
↳Nar
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 63
↳Polynomial Ordering
→DP Problem 6
↳Nar
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
POL(PROPER(x1)) = 1 + x1 POL(h(x1)) = 1 + x1 POL(mark(x1)) = 0 POL(ok(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 40
↳FwdInst
...
→DP Problem 64
↳Dependency Graph
→DP Problem 6
↳Nar
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Narrowing Transformation
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 66
↳Narrowing Transformation
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 67
↳Narrowing Transformation
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 68
↳Narrowing Transformation
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 69
↳Narrowing Transformation
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(f(f(X')))) -> TOP(f(mark(g(h(f(X'))))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 70
↳Rewriting Transformation
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(mark(g(h(f(X'))))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(ok(f(f(X')))) -> TOP(f(mark(g(h(f(X'))))))
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 71
↳Narrowing Transformation
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(ok(h(X''))) -> TOP(h(active(X'')))
TOP(ok(h(f(X')))) -> TOP(h(mark(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 72
↳Rewriting Transformation
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(h(f(X')))) -> TOP(h(mark(g(h(f(X'))))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(ok(h(f(X')))) -> TOP(h(mark(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 73
↳Polynomial Ordering
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(f(X''))) -> TOP(mark(g(h(f(X'')))))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(active(x1)) = 0 POL(proper(x1)) = 0 POL(g(x1)) = 0 POL(h(x1)) = 0 POL(mark(x1)) = x1 POL(ok(x1)) = x1 POL(TOP(x1)) = x1 POL(f(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 74
↳Polynomial Ordering
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(active(x1)) = 0 POL(proper(x1)) = 0 POL(g(x1)) = 0 POL(h(x1)) = 1 POL(mark(x1)) = 1 POL(ok(x1)) = x1 POL(TOP(x1)) = x1 POL(f(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 75
↳Polynomial Ordering
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(f(f(X')))) -> TOP(mark(f(g(h(f(X'))))))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(g(x1)) = 0 POL(h(x1)) = 0 POL(mark(x1)) = x1 POL(ok(x1)) = x1 POL(TOP(x1)) = x1 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 76
↳Polynomial Ordering
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(h(f(X')))) -> TOP(mark(h(g(h(f(X'))))))
TOP(ok(h(f(X')))) -> TOP(h(f(active(X'))))
TOP(ok(f(h(X')))) -> TOP(f(h(active(X'))))
TOP(ok(f(f(X')))) -> TOP(f(f(active(X'))))
TOP(ok(h(h(X')))) -> TOP(h(h(active(X'))))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
POL(active(x1)) = 0 POL(proper(x1)) = 0 POL(g(x1)) = x1 POL(h(x1)) = x1 POL(mark(x1)) = 0 POL(ok(x1)) = 1 POL(TOP(x1)) = 1 + x1 POL(f(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 77
↳Polynomial Ordering
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
POL(proper(x1)) = 1 POL(g(x1)) = 0 POL(h(x1)) = x1 POL(mark(x1)) = 1 POL(ok(x1)) = 0 POL(TOP(x1)) = x1 POL(f(x1)) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 78
↳Polynomial Ordering
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(f(X')))) -> TOP(h(f(proper(X'))))
TOP(mark(f(h(X')))) -> TOP(f(h(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = 0 POL(g(x1)) = 0 POL(h(x1)) = x1 POL(mark(x1)) = 1 POL(ok(x1)) = 0 POL(TOP(x1)) = 1 + x1 POL(f(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Nar
→DP Problem 65
↳Nar
...
→DP Problem 79
↳Dependency Graph
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost