R
↳Dependency Pair Analysis
ACTIVE(f(X)) -> G(h(f(X)))
ACTIVE(f(X)) -> H(f(X))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(h(X)) -> H(active(X))
ACTIVE(h(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
H(mark(X)) -> H(X)
H(ok(X)) -> H(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
G(ok(X)) -> G(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
G(ok(X)) -> G(X)
trivial
G(x1) -> G(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
trivial
F(x1) -> F(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
H(ok(X)) -> H(X)
H(mark(X)) -> H(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
H(ok(X)) -> H(X)
H(mark(X)) -> H(X)
trivial
H(x1) -> H(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 9
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
ACTIVE(h(X)) -> ACTIVE(X)
ACTIVE(f(X)) -> ACTIVE(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(h(X)) -> ACTIVE(X)
ACTIVE(f(X)) -> ACTIVE(X)
trivial
ACTIVE(x1) -> ACTIVE(x1)
h(x1) -> h(x1)
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 10
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
trivial
PROPER(x1) -> PROPER(x1)
f(x1) -> f(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 6
↳AFS
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
ok > active > mark > proper
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
proper(x1) -> proper(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
f(x1) -> x1
g(x1) -> x1
h(x1) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 12
↳Dependency Graph
active(f(X)) -> mark(g(h(f(X))))
active(f(X)) -> f(active(X))
active(h(X)) -> h(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
h(mark(X)) -> mark(h(X))
h(ok(X)) -> ok(h(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost