R
↳Dependency Pair Analysis
2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) -> ACTIVATE(Z)
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z)
2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons(X, Z)) -> ACTIVATE(Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> ACTIVATE(Z)
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> S(plus(X, Y))
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(ns(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
POL(n__from(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
POL(n__from(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost