R
↳Dependency Pair Analysis
ACTIVE(f(a, b, X)) -> F(X, X, X)
ACTIVE(f(X1, X2, X3)) -> F(active(X1), X2, X3)
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(f(X1, X2, X3)) -> F(X1, X2, active(X3))
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X3)
F(mark(X1), X2, X3) -> F(X1, X2, X3)
F(X1, X2, mark(X3)) -> F(X1, X2, X3)
F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
PROPER(f(X1, X2, X3)) -> F(proper(X1), proper(X2), proper(X3))
PROPER(f(X1, X2, X3)) -> PROPER(X1)
PROPER(f(X1, X2, X3)) -> PROPER(X2)
PROPER(f(X1, X2, X3)) -> PROPER(X3)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
F(X1, X2, mark(X3)) -> F(X1, X2, X3)
F(mark(X1), X2, X3) -> F(X1, X2, X3)
F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
F(X1, X2, mark(X3)) -> F(X1, X2, X3)
F(mark(X1), X2, X3) -> F(X1, X2, X3)
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(mark(X1), X2, X3) -> F(X1, X2, X3)
POL(mark(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
F(X1, X2, mark(X3)) -> F(X1, X2, X3)
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(X1, X2, mark(X3)) -> F(X1, X2, X3)
POL(mark(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X3)
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X1)
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X3)
ACTIVE(f(X1, X2, X3)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(f(x1, x2, x3)) = 1 + x1 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Nar
PROPER(f(X1, X2, X3)) -> PROPER(X3)
PROPER(f(X1, X2, X3)) -> PROPER(X2)
PROPER(f(X1, X2, X3)) -> PROPER(X1)
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(f(X1, X2, X3)) -> PROPER(X3)
PROPER(f(X1, X2, X3)) -> PROPER(X2)
PROPER(f(X1, X2, X3)) -> PROPER(X1)
POL(PROPER(x1)) = x1 POL(f(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 9
↳Dependency Graph
→DP Problem 4
↳Nar
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
four new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(a)) -> TOP(ok(a))
TOP(mark(b)) -> TOP(ok(b))
TOP(mark(c)) -> TOP(ok(c))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 10
↳Narrowing Transformation
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(b)) -> TOP(ok(b))
TOP(mark(a)) -> TOP(ok(a))
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
TOP(ok(X)) -> TOP(active(X))
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(f(a, b, X''))) -> TOP(mark(f(X'', X'', X'')))
TOP(ok(c)) -> TOP(mark(a))
TOP(ok(c)) -> TOP(mark(b))
TOP(ok(f(X1', X2', X3'))) -> TOP(f(active(X1'), X2', X3'))
TOP(ok(f(X1', X2', X3'))) -> TOP(f(X1', X2', active(X3')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Remaining Obligation(s)
TOP(ok(f(X1', X2', X3'))) -> TOP(f(X1', X2', active(X3')))
TOP(ok(f(X1', X2', X3'))) -> TOP(f(active(X1'), X2', X3'))
TOP(ok(f(a, b, X''))) -> TOP(mark(f(X'', X'', X'')))
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
active(f(a, b, X)) -> mark(f(X, X, X))
active(c) -> mark(a)
active(c) -> mark(b)
active(f(X1, X2, X3)) -> f(active(X1), X2, X3)
active(f(X1, X2, X3)) -> f(X1, X2, active(X3))
f(mark(X1), X2, X3) -> mark(f(X1, X2, X3))
f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(a) -> ok(a)
proper(b) -> ok(b)
proper(c) -> ok(c)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost