R
↳Dependency Pair Analysis
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
ZPRIMES -> SIEVE(nats(s(s(0))))
ZPRIMES -> NATS(s(s(0)))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
ACTIVATE(nsieve(X)) -> SIEVE(X)
ACTIVATE(nnats(X)) -> NATS(X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
four new Dependency Pairs are created:
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Forward Instantiation Transformation
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
ACTIVATE(nsieve(X)) -> SIEVE(X)
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
four new Dependency Pairs are created:
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), 0, X3')) -> FILTER(cons(X'', nsieve(X'''')), 0, X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), s(N''), X3')) -> FILTER(cons(X'', nsieve(X'''')), s(N''), X3')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), s(N''), X3')) -> FILTER(cons(X'', nsieve(X'''')), s(N''), X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), 0, X3')) -> FILTER(cons(X'', nsieve(X'''')), 0, X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
ACTIVATE(nsieve(X)) -> SIEVE(X)
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
eight new Dependency Pairs are created:
ACTIVATE(nsieve(X)) -> SIEVE(X)
ACTIVATE(nsieve(cons(s(N''), nfilter(X1''', X2''', X3''')))) -> SIEVE(cons(s(N''), nfilter(X1''', X2''', X3''')))
ACTIVATE(nsieve(cons(s(N''), nsieve(X''')))) -> SIEVE(cons(s(N''), nsieve(X''')))
ACTIVATE(nsieve(cons(s(N''), nnats(X''')))) -> SIEVE(cons(s(N''), nnats(X''')))
ACTIVATE(nsieve(cons(s(N''), Y'''))) -> SIEVE(cons(s(N''), Y'''))
ACTIVATE(nsieve(cons(0, nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(0, nfilter(X1'''', X2'''', X3'''')))
ACTIVATE(nsieve(cons(0, nsieve(X'''')))) -> SIEVE(cons(0, nsieve(X'''')))
ACTIVATE(nsieve(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))
ACTIVATE(nsieve(cons(s(N''), nsieve(X'''')))) -> SIEVE(cons(s(N''), nsieve(X'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
ACTIVATE(nsieve(cons(s(N''), nsieve(X'''')))) -> SIEVE(cons(s(N''), nsieve(X'''')))
ACTIVATE(nsieve(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
ACTIVATE(nsieve(cons(0, nsieve(X'''')))) -> SIEVE(cons(0, nsieve(X'''')))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nsieve(cons(0, nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(0, nfilter(X1'''', X2'''', X3'''')))
ACTIVATE(nsieve(cons(s(N''), Y'''))) -> SIEVE(cons(s(N''), Y'''))
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
ACTIVATE(nsieve(cons(s(N''), nnats(X''')))) -> SIEVE(cons(s(N''), nnats(X''')))
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
ACTIVATE(nsieve(cons(s(N''), nsieve(X''')))) -> SIEVE(cons(s(N''), nsieve(X''')))
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), s(N''), X3')) -> FILTER(cons(X'', nsieve(X'''')), s(N''), X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
ACTIVATE(nsieve(cons(s(N''), nfilter(X1''', X2''', X3''')))) -> SIEVE(cons(s(N''), nfilter(X1''', X2''', X3''')))
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), 0, X3')) -> FILTER(cons(X'', nsieve(X'''')), 0, X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SIEVE(cons(s(N), nnats(X'))) -> FILTER(nats(X'), N, N)
SIEVE(cons(s(0), nnats(X''))) -> FILTER(nats(X''), 0, 0)
SIEVE(cons(s(s(N'')), nnats(X''))) -> FILTER(nats(X''), s(N''), s(N''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
ACTIVATE(nsieve(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
ACTIVATE(nsieve(cons(0, nsieve(X'''')))) -> SIEVE(cons(0, nsieve(X'''')))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nsieve(cons(0, nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(0, nfilter(X1'''', X2'''', X3'''')))
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nsieve(cons(s(N''), Y'''))) -> SIEVE(cons(s(N''), Y'''))
SIEVE(cons(s(s(N'')), nnats(X''))) -> FILTER(nats(X''), s(N''), s(N''))
SIEVE(cons(s(0), nnats(X''))) -> FILTER(nats(X''), 0, 0)
ACTIVATE(nsieve(cons(s(N''), nnats(X''')))) -> SIEVE(cons(s(N''), nnats(X''')))
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
ACTIVATE(nsieve(cons(s(N''), nsieve(X''')))) -> SIEVE(cons(s(N''), nsieve(X''')))
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), s(N''), X3')) -> FILTER(cons(X'', nsieve(X'''')), s(N''), X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
ACTIVATE(nsieve(cons(s(N''), nfilter(X1''', X2''', X3''')))) -> SIEVE(cons(s(N''), nfilter(X1''', X2''', X3''')))
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), 0, X3')) -> FILTER(cons(X'', nsieve(X'''')), 0, X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
ACTIVATE(nsieve(cons(s(N''), nsieve(X'''')))) -> SIEVE(cons(s(N''), nsieve(X'''')))
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
four new Dependency Pairs are created:
SIEVE(cons(s(N), Y')) -> FILTER(Y', N, N)
SIEVE(cons(s(0), cons(X'', nfilter(X1'''', X2'''', X3'''')))) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, 0)
SIEVE(cons(s(0), cons(X'', nsieve(X'''')))) -> FILTER(cons(X'', nsieve(X'''')), 0, 0)
SIEVE(cons(s(s(N'')), cons(X'', nfilter(X1'''', X2'''', X3'''')))) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), s(N''))
SIEVE(cons(s(s(N'')), cons(X'', nsieve(X'''')))) -> FILTER(cons(X'', nsieve(X'''')), s(N''), s(N''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Remaining Obligation(s)
ACTIVATE(nsieve(cons(s(N''), nsieve(X'''')))) -> SIEVE(cons(s(N''), nsieve(X'''')))
SIEVE(cons(0, nsieve(X''))) -> ACTIVATE(nsieve(X''))
ACTIVATE(nsieve(cons(0, nsieve(X'''')))) -> SIEVE(cons(0, nsieve(X'''')))
SIEVE(cons(0, nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nsieve(cons(0, nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(0, nfilter(X1'''', X2'''', X3'''')))
SIEVE(cons(s(s(N'')), cons(X'', nsieve(X'''')))) -> FILTER(cons(X'', nsieve(X'''')), s(N''), s(N''))
SIEVE(cons(s(s(N'')), cons(X'', nfilter(X1'''', X2'''', X3'''')))) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), s(N''))
SIEVE(cons(s(0), cons(X'', nsieve(X'''')))) -> FILTER(cons(X'', nsieve(X'''')), 0, 0)
SIEVE(cons(s(0), cons(X'', nfilter(X1'''', X2'''', X3'''')))) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, 0)
ACTIVATE(nsieve(cons(s(N''), Y'''))) -> SIEVE(cons(s(N''), Y'''))
SIEVE(cons(s(s(N'')), nnats(X''))) -> FILTER(nats(X''), s(N''), s(N''))
SIEVE(cons(s(0), nnats(X''))) -> FILTER(nats(X''), 0, 0)
ACTIVATE(nsieve(cons(s(N''), nnats(X''')))) -> SIEVE(cons(s(N''), nnats(X''')))
SIEVE(cons(s(N), nsieve(X''))) -> ACTIVATE(nsieve(X''))
SIEVE(cons(s(N), nsieve(X'))) -> FILTER(sieve(X'), N, N)
ACTIVATE(nsieve(cons(s(N''), nsieve(X''')))) -> SIEVE(cons(s(N''), nsieve(X''')))
FILTER(cons(X, nsieve(X'')), s(N), M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), s(N''), X3')) -> FILTER(cons(X'', nsieve(X'''')), s(N''), X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), s(N), M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), s(N''), X3')
SIEVE(cons(s(N), nfilter(X1'', X2'', X3''))) -> ACTIVATE(nfilter(X1'', X2'', X3''))
ACTIVATE(nsieve(cons(s(N''), nfilter(X1''', X2''', X3''')))) -> SIEVE(cons(s(N''), nfilter(X1''', X2''', X3''')))
FILTER(cons(X, nsieve(X'')), 0, M) -> ACTIVATE(nsieve(X''))
ACTIVATE(nfilter(cons(X'', nsieve(X'''')), 0, X3')) -> FILTER(cons(X'', nsieve(X'''')), 0, X3')
ACTIVATE(nfilter(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')) -> FILTER(cons(X'', nfilter(X1'''', X2'''', X3'''')), 0, X3')
FILTER(cons(X, nfilter(X1'', X2'', X3'')), 0, M) -> ACTIVATE(nfilter(X1'', X2'', X3''))
SIEVE(cons(s(N), nfilter(X1', X2', X3'))) -> FILTER(filter(X1', X2', X3'), N, N)
ACTIVATE(nsieve(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))) -> SIEVE(cons(s(N''), nfilter(X1'''', X2'''', X3'''')))
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost