R
↳Dependency Pair Analysis
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
ZPRIMES -> SIEVE(nats(s(s(0))))
ZPRIMES -> NATS(s(s(0)))
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
ACTIVATE(nsieve(X)) -> SIEVE(X)
ACTIVATE(nnats(X)) -> NATS(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
SIEVE(cons(s(N), Y)) -> ACTIVATE(Y)
SIEVE(cons(s(N), Y)) -> FILTER(activate(Y), N, N)
SIEVE(cons(0, Y)) -> ACTIVATE(Y)
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
POL(activate(x1)) = x1 POL(filter(x1, x2, x3)) = x1 POL(FILTER(x1, x2, x3)) = x1 POL(SIEVE(x1)) = 1 + x1 POL(n__sieve(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1 POL(sieve(x1)) = 1 + x1 POL(n__filter(x1, x2, x3)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x2 POL(n__nats(x1)) = 0 POL(nats(x1)) = 0 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ACTIVATE(nsieve(X)) -> SIEVE(X)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
FILTER(cons(X, Y), 0, M) -> ACTIVATE(Y)
POL(FILTER(x1, x2, x3)) = x1 + x2 POL(0) = 1 POL(n__filter(x1, x2, x3)) = x1 + x2 POL(cons(x1, x2)) = x2 POL(s(x1)) = 0 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Polynomial Ordering
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost
ACTIVATE(nfilter(X1, X2, X3)) -> FILTER(X1, X2, X3)
POL(n__filter(x1, x2, x3)) = 1 + x1 POL(FILTER(x1, x2, x3)) = x1 POL(cons(x1, x2)) = x2 POL(s(x1)) = 0 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Dependency Graph
FILTER(cons(X, Y), s(N), M) -> ACTIVATE(Y)
filter(cons(X, Y), 0, M) -> cons(0, nfilter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) -> cons(X, nfilter(activate(Y), N, M))
filter(X1, X2, X3) -> nfilter(X1, X2, X3)
sieve(cons(0, Y)) -> cons(0, nsieve(activate(Y)))
sieve(cons(s(N), Y)) -> cons(s(N), nsieve(filter(activate(Y), N, N)))
sieve(X) -> nsieve(X)
nats(N) -> cons(N, nnats(s(N)))
nats(X) -> nnats(X)
zprimes -> sieve(nats(s(s(0))))
activate(nfilter(X1, X2, X3)) -> filter(X1, X2, X3)
activate(nsieve(X)) -> sieve(X)
activate(nnats(X)) -> nats(X)
activate(X) -> X
innermost