R
↳Dependency Pair Analysis
FIB(N) -> SEL(N, fib1(s(0), s(0)))
FIB(N) -> FIB1(s(0), s(0))
FIB1(X, Y) -> ADD(X, Y)
ADD(s(X), Y) -> ADD(X, Y)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfib1(X1, X2)) -> FIB1(X1, X2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
ADD(s(X), Y) -> ADD(X, Y)
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X
innermost
ADD(s(X), Y) -> ADD(X, Y)
POL(s(x1)) = 1 + x1 POL(ADD(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
POL(activate(x1)) = 0 POL(0) = 0 POL(cons(x1, x2)) = 0 POL(SEL(x1, x2)) = x1 POL(n__fib1(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(fib1(x1, x2)) = 0 POL(add(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X
innermost