Term Rewriting System R:
[N, X, Y, X1, X2, XS]
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIB(N) -> SEL(N, fib1(s(0), s(0)))
FIB(N) -> FIB1(s(0), s(0))
FIB1(X, Y) -> ADD(X, Y)
ADD(s(X), Y) -> ADD(X, Y)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfib1(X1, X2)) -> FIB1(X1, X2)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

ADD(s(X), Y) -> ADD(X, Y)


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADD(s(X), Y) -> ADD(X, Y)
one new Dependency Pair is created:

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADD(s(s(X'')), Y'') -> ADD(s(X''), Y'')
one new Dependency Pair is created:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pair:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(s(s(s(X''''))), Y'''') -> ADD(s(s(X'''')), Y'''')


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(ADD(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
two new Dependency Pairs are created:

SEL(s(N), cons(X, nfib1(X1', X2'))) -> SEL(N, fib1(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Narrowing Transformation


Dependency Pairs:

SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfib1(X1', X2'))) -> SEL(N, fib1(X1', X2'))


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, nfib1(X1', X2'))) -> SEL(N, fib1(X1', X2'))
two new Dependency Pairs are created:

SEL(s(N), cons(X, nfib1(X1'', X2''))) -> SEL(N, cons(X1'', nfib1(X2'', add(X1'', X2''))))
SEL(s(N), cons(X, nfib1(X1'', X2''))) -> SEL(N, nfib1(X1'', X2''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 7
Forward Instantiation Transformation


Dependency Pairs:

SEL(s(N), cons(X, nfib1(X1'', X2''))) -> SEL(N, cons(X1'', nfib1(X2'', add(X1'', X2''))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(N), cons(X, XS')) -> SEL(N, XS')
two new Dependency Pairs are created:

SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(s(s(N'')), cons(X, cons(X'', nfib1(X1'''', X2'''')))) -> SEL(s(N''), cons(X'', nfib1(X1'''', X2'''')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 8
Polynomial Ordering


Dependency Pair:

SEL(s(N), cons(X, nfib1(X1'', X2''))) -> SEL(N, cons(X1'', nfib1(X2'', add(X1'', X2''))))


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(N), cons(X, nfib1(X1'', X2''))) -> SEL(N, cons(X1'', nfib1(X2'', add(X1'', X2''))))


Additionally, the following usable rules for innermost can be oriented:

add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(SEL(x1, x2))=  x1  
  POL(cons(x1, x2))=  0  
  POL(n__fib1(x1, x2))=  0  
  POL(s(x1))=  1 + x1  
  POL(add(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 10
Dependency Graph


Dependency Pair:


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 9
Polynomial Ordering


Dependency Pair:

SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))


Rules:


fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, add(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(cons(x1, x2))=  0  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.


Innermost Termination of R successfully shown.
Duration:
0:00 minutes