Term Rewriting System R:
[N, X, Y, XS, X1, X2]
active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(fib(N)) -> SEL(N, fib1(s(0), s(0)))
ACTIVE(fib(N)) -> FIB1(s(0), s(0))
ACTIVE(fib(N)) -> S(0)
ACTIVE(fib1(X, Y)) -> CONS(X, fib1(Y, add(X, Y)))
ACTIVE(fib1(X, Y)) -> FIB1(Y, add(X, Y))
ACTIVE(fib1(X, Y)) -> ADD(X, Y)
ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(sel(s(N), cons(X, XS))) -> SEL(N, XS)
ACTIVE(fib(X)) -> FIB(active(X))
ACTIVE(fib(X)) -> ACTIVE(X)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> FIB1(active(X1), X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib1(X1, X2)) -> FIB1(X1, active(X2))
ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(X1, active(X2))
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
FIB(mark(X)) -> FIB(X)
FIB(ok(X)) -> FIB(X)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
FIB1(mark(X1), X2) -> FIB1(X1, X2)
FIB1(X1, mark(X2)) -> FIB1(X1, X2)
FIB1(ok(X1), ok(X2)) -> FIB1(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
PROPER(fib(X)) -> FIB(proper(X))
PROPER(fib(X)) -> PROPER(X)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> FIB1(proper(X1), proper(X2))
PROPER(fib1(X1, X2)) -> PROPER(X1)
PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains nine SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 10
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(mark(X1), X2) -> SEL(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 10
Polo
             ...
               →DP Problem 11
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(X1, mark(X2)) -> SEL(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x2  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 10
Polo
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

FIB1(ok(X1), ok(X2)) -> FIB1(X1, X2)
FIB1(X1, mark(X2)) -> FIB1(X1, X2)
FIB1(mark(X1), X2) -> FIB1(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIB1(ok(X1), ok(X2)) -> FIB1(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FIB1(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

FIB1(X1, mark(X2)) -> FIB1(X1, X2)
FIB1(mark(X1), X2) -> FIB1(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIB1(X1, mark(X2)) -> FIB1(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FIB1(x1, x2))=  x2  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polo
             ...
               →DP Problem 14
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

FIB1(mark(X1), X2) -> FIB1(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIB1(mark(X1), X2) -> FIB1(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FIB1(x1, x2))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polo
             ...
               →DP Problem 15
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 16
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ok(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 16
Polo
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 18
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

S(mark(X)) -> S(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(mark(X)) -> S(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 18
Polo
             ...
               →DP Problem 19
Dependency Graph
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

FIB(ok(X)) -> FIB(X)
FIB(mark(X)) -> FIB(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIB(ok(X)) -> FIB(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(FIB(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

FIB(mark(X)) -> FIB(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FIB(mark(X)) -> FIB(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(FIB(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Dependency Graph
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 22
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(X1, mark(X2)) -> ADD(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 22
Polo
             ...
               →DP Problem 23
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(mark(X1), X2) -> ADD(X1, X2)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ADD(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 22
Polo
             ...
               →DP Problem 24
Dependency Graph
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(fib(x1))=  x1  
  POL(s(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  
  POL(add(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1  
  POL(fib(x1))=  x1  
  POL(s(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 26
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(s(X)) -> ACTIVE(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(s(x1))=  1 + x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 27
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(fib1(X1, X2)) -> ACTIVE(X2)
ACTIVE(fib1(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 28
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(sel(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 29
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:

ACTIVE(fib(X)) -> ACTIVE(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(fib(X)) -> ACTIVE(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(fib(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 30
Dependency Graph
       →DP Problem 8
Polo
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(fib(x1))=  x1  
  POL(s(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  
  POL(add(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(fib(x1))=  x1  
  POL(s(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polo
             ...
               →DP Problem 32
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(s(X)) -> PROPER(X)
PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(s(x1))=  1 + x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polo
             ...
               →DP Problem 33
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(fib1(X1, X2)) -> PROPER(X2)
PROPER(fib1(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(sel(x1, x2))=  x1 + x2  
  POL(fib1(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polo
             ...
               →DP Problem 34
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(fib(x1))=  x1  
  POL(sel(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polo
             ...
               →DP Problem 35
Polynomial Ordering
       →DP Problem 9
Remaining


Dependency Pair:

PROPER(fib(X)) -> PROPER(X)


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(fib(X)) -> PROPER(X)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(fib(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 31
Polo
             ...
               →DP Problem 36
Dependency Graph
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(fib(N)) -> mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) -> mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(fib(X)) -> fib(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(fib1(X1, X2)) -> fib1(active(X1), X2)
active(fib1(X1, X2)) -> fib1(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
fib(mark(X)) -> mark(fib(X))
fib(ok(X)) -> ok(fib(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
fib1(mark(X1), X2) -> mark(fib1(X1, X2))
fib1(X1, mark(X2)) -> mark(fib1(X1, X2))
fib1(ok(X1), ok(X2)) -> ok(fib1(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
proper(fib(X)) -> fib(proper(X))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) -> fib1(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:21 minutes