R
↳Dependency Pair Analysis
2ND(cons(X, XS)) -> HEAD(activate(XS))
2ND(cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
cons > ACTIVATE
ntake > TAKE
TAKE(x1, x2) -> TAKE(x1, x2)
ACTIVATE(x1) -> ACTIVATE(x1)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
ntake(x1, x2) -> ntake(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
SEL > activate > from > nfrom
SEL > activate > from > cons
SEL > activate > from > s
{ntake, take} > nil
{ntake, take} > activate > from > nfrom
{ntake, take} > activate > from > cons
{ntake, take} > activate > from > s
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
activate(x1) -> activate(x1)
nfrom(x1) -> nfrom(x1)
from(x1) -> from(x1)
ntake(x1, x2) -> ntake(x1, x2)
take(x1, x2) -> take(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost