R
↳Dependency Pair Analysis
2ND(cons(X, XS)) -> HEAD(activate(XS))
2ND(cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
TAKE(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
ACTIVATE(x1) -> x1
ntake(x1, x2) -> ntake(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Forward Instantiation Transformation
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(s(N'')), cons(X, nfrom(X'''))) -> SEL(s(N''), from(X'''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
SEL(s(s(N'')), cons(X, nfrom(X'''))) -> SEL(s(N''), from(X'''))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(s(N'')), cons(X, cons(X'', ntake(X1''', X2''')))) -> SEL(s(N''), cons(X'', ntake(X1''', X2''')))
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(s(s(s(N''''))), cons(X, cons(X'', nfrom(X''''')))) -> SEL(s(s(N'''')), cons(X'', nfrom(X''''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Remaining Obligation(s)
SEL(s(s(s(N''''))), cons(X, cons(X'', nfrom(X''''')))) -> SEL(s(s(N'''')), cons(X'', nfrom(X''''')))
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(s(s(N'')), cons(X, cons(X'', ntake(X1''', X2''')))) -> SEL(s(N''), cons(X'', ntake(X1''', X2''')))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(s(N'')), cons(X, nfrom(X'''))) -> SEL(s(N''), from(X'''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost