R
↳Dependency Pair Analysis
2ND(cons(X, XS)) -> HEAD(activate(XS))
2ND(cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
TAKE(s(N), cons(X, XS)) -> ACTIVATE(XS)
TAKE(s(N), cons(X, ntake(X1'', X2''))) -> ACTIVATE(ntake(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
TAKE(s(N), cons(X, ntake(X1'', X2''))) -> ACTIVATE(ntake(X1'', X2''))
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(ntake(X1, X2)) -> TAKE(X1, X2)
ACTIVATE(ntake(s(N''), cons(X'', ntake(X1'''', X2'''')))) -> TAKE(s(N''), cons(X'', ntake(X1'''', X2'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
ACTIVATE(ntake(s(N''), cons(X'', ntake(X1'''', X2'''')))) -> TAKE(s(N''), cons(X'', ntake(X1'''', X2'''')))
TAKE(s(N), cons(X, ntake(X1'', X2''))) -> ACTIVATE(ntake(X1'', X2''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
TAKE(s(N), cons(X, ntake(X1'', X2''))) -> ACTIVATE(ntake(X1'', X2''))
TAKE(s(N), cons(X, ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))) -> ACTIVATE(ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
TAKE(s(N), cons(X, ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))) -> ACTIVATE(ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))
ACTIVATE(ntake(s(N''), cons(X'', ntake(X1'''', X2'''')))) -> TAKE(s(N''), cons(X'', ntake(X1'''', X2'''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(ntake(s(N''), cons(X'', ntake(X1'''', X2'''')))) -> TAKE(s(N''), cons(X'', ntake(X1'''', X2'''')))
ACTIVATE(ntake(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))) -> TAKE(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
ACTIVATE(ntake(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))) -> TAKE(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))
TAKE(s(N), cons(X, ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))) -> ACTIVATE(ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
ACTIVATE(ntake(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))) -> TAKE(s(N'''), cons(X''', ntake(s(N''''''), cons(X'''''', ntake(X1'''''''', X2'''''''')))))
TAKE(s(N), cons(X, ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))) -> ACTIVATE(ntake(s(N''''), cons(X'''', ntake(X1'''''', X2''''''))))
TAKE(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
ACTIVATE(x1) -> x1
ntake(x1, x2) -> ntake(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Nar
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Narrowing Transformation
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, nfrom(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(X1', X2'))) -> SEL(N, take(X1', X2'))
SEL(s(N), cons(X, ntake(0, X2''))) -> SEL(N, nil)
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, ntake(X1'', X2''))) -> SEL(N, ntake(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(s(s(N'')), cons(X, cons(X'', nfrom(X''''')))) -> SEL(s(N''), cons(X'', nfrom(X''''')))
SEL(s(s(N'')), cons(X, cons(X'', ntake(s(N''''), cons(X'''', XS'''))))) -> SEL(s(N''), cons(X'', ntake(s(N''''), cons(X'''', XS'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS')))) -> SEL(N, cons(X'', ntake(N'', activate(XS'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X'''))))) -> SEL(N, cons(X'', ntake(N'', from(X'''))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', nfrom(X''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1', X2'))))) -> SEL(N, cons(X'', ntake(N'', take(X1', X2'))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(0, X2''))))) -> SEL(N, cons(X'', ntake(N'', nil)))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(X1'', X2''))))) -> SEL(N, cons(X'', ntake(N'', ntake(X1'', X2''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 18
↳Narrowing Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', activate(XS'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', nfrom(X'0))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', from(X'0))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', ntake(X1', X2'))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', take(X1', X2'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', ntake(X1', X2'))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', take(X1', X2'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', nfrom(X'0))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', from(X'0))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
five new Dependency Pairs are created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', XS'')))) -> SEL(N, cons(X'', ntake(N'', XS'')))
SEL(s(s(N'0)), cons(X, ntake(s(s(N'''')), cons(X'''', cons(X''''', XS''''))))) -> SEL(s(N'0), cons(X'''', ntake(s(N''''), cons(X''''', XS''''))))
SEL(s(s(N'0)), cons(X, ntake(s(s(N'''')), cons(X'''', cons(X'''0, nfrom(X'''''')))))) -> SEL(s(N'0), cons(X'''', ntake(s(N''''), cons(X'''0, nfrom(X'''''')))))
SEL(s(s(N''')), cons(X, ntake(s(s(N'''''')), cons(X''', cons(X''''0, ntake(s(N'''''''), cons(X'''''', nfrom(X'0'')))))))) -> SEL(s(N'''), cons(X''', ntake(s(N''''''), cons(X''''0, ntake(s(N'''''''), cons(X'''''', nfrom(X'0'')))))))
SEL(s(s(N''')), cons(X, ntake(s(s(N'''''')), cons(X''', cons(X''''0, ntake(s(N'''''''), cons(X'''''', ntake(X1''', X2''')))))))) -> SEL(s(N'''), cons(X''', ntake(s(N''''''), cons(X''''0, ntake(s(N'''''''), cons(X'''''', ntake(X1''', X2''')))))))
SEL(s(s(N''')), cons(X, ntake(s(s(N'''''')), cons(X''', cons(X''''0, ntake(s(N'''''''), cons(X'''''', XS''''))))))) -> SEL(s(N'''), cons(X''', ntake(s(N''''''), cons(X''''0, ntake(s(N'''''''), cons(X'''''', XS''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 20
↳Remaining Obligation(s)
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', ntake(X1', X2'))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', take(X1', X2'))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', nfrom(X'0))))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', from(X'0))))))
SEL(s(N), cons(X, ntake(s(N''), cons(X'', ntake(s(N'''), cons(X''', XS'')))))) -> SEL(N, cons(X'', ntake(N'', cons(X''', ntake(N''', XS'')))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 21
↳Instantiation Transformation
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
SEL(s(N), cons(X, ntake(s(N''), cons(X'', nfrom(X''''))))) -> SEL(N, cons(X'', ntake(N'', cons(X'''', nfrom(s(X''''))))))
SEL(s(N0), cons(X', ntake(s(N''''), cons(X''0, nfrom(s(X''0)))))) -> SEL(N0, cons(X''0, ntake(N'''', cons(s(X''0), nfrom(s(s(X''0)))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 23
↳Argument Filtering and Ordering
SEL(s(N0), cons(X', ntake(s(N''''), cons(X''0, nfrom(s(X''0)))))) -> SEL(N0, cons(X''0, ntake(N'''', cons(s(X''0), nfrom(s(s(X''0)))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
SEL(s(N0), cons(X', ntake(s(N''''), cons(X''0, nfrom(s(X''0)))))) -> SEL(N0, cons(X''0, ntake(N'''', cons(s(X''0), nfrom(s(s(X''0)))))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
ntake(x1, x2) -> ntake(x1, x2)
nfrom(x1) -> nfrom
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 25
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 22
↳Forward Instantiation Transformation
SEL(s(s(N'0)), cons(X, ntake(s(s(N'''')), cons(X'''', cons(X''''', XS''''))))) -> SEL(s(N'0), cons(X'''', ntake(s(N''''), cons(X''''', XS''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
SEL(s(s(N'0)), cons(X, ntake(s(s(N'''')), cons(X'''', cons(X''''', XS''''))))) -> SEL(s(N'0), cons(X'''', ntake(s(N''''), cons(X''''', XS''''))))
SEL(s(s(s(N'0''))), cons(X, ntake(s(s(s(N''''''))), cons(X''''0, cons(X'''''0, cons(X'''''''', XS'''''')))))) -> SEL(s(s(N'0'')), cons(X''''0, ntake(s(s(N'''''')), cons(X'''''0, cons(X'''''''', XS'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 24
↳Argument Filtering and Ordering
SEL(s(s(s(N'0''))), cons(X, ntake(s(s(s(N''''''))), cons(X''''0, cons(X'''''0, cons(X'''''''', XS'''''')))))) -> SEL(s(s(N'0'')), cons(X''''0, ntake(s(s(N'''''')), cons(X'''''0, cons(X'''''''', XS'''''')))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
SEL(s(s(s(N'0''))), cons(X, ntake(s(s(s(N''''''))), cons(X''''0, cons(X'''''0, cons(X'''''''', XS'''''')))))) -> SEL(s(s(N'0'')), cons(X''''0, ntake(s(s(N'''''')), cons(X'''''0, cons(X'''''''', XS'''''')))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
ntake(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
nfrom(x1) -> nfrom
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 14
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 13
↳Argument Filtering and Ordering
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
head(cons(X, XS)) -> X
2nd(cons(X, XS)) -> head(activate(XS))
take(0, XS) -> nil
take(s(N), cons(X, XS)) -> cons(X, ntake(N, activate(XS)))
take(X1, X2) -> ntake(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(ntake(X1, X2)) -> take(X1, X2)
activate(X) -> X
innermost
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)