Term Rewriting System R:
[X, XS, N, X1, X2]
active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(2nd(cons(X, XS))) -> HEAD(XS)
ACTIVE(take(s(N), cons(X, XS))) -> CONS(X, take(N, XS))
ACTIVE(take(s(N), cons(X, XS))) -> TAKE(N, XS)
ACTIVE(sel(s(N), cons(X, XS))) -> SEL(N, XS)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> HEAD(active(X))
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(2nd(X)) -> 2ND(active(X))
ACTIVE(2nd(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(take(X1, X2)) -> TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
HEAD(mark(X)) -> HEAD(X)
HEAD(ok(X)) -> HEAD(X)
2ND(mark(X)) -> 2ND(X)
2ND(ok(X)) -> 2ND(X)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(head(X)) -> HEAD(proper(X))
PROPER(head(X)) -> PROPER(X)
PROPER(2nd(X)) -> 2ND(proper(X))
PROPER(2nd(X)) -> PROPER(X)
PROPER(take(X1, X2)) -> TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains 10 SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FROM(ok(X)) -> FROM(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FROM(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 11
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

FROM(mark(X)) -> FROM(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FROM(mark(X)) -> FROM(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FROM(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

HEAD(ok(X)) -> HEAD(X)
HEAD(mark(X)) -> HEAD(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

HEAD(ok(X)) -> HEAD(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HEAD(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

HEAD(mark(X)) -> HEAD(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

HEAD(mark(X)) -> HEAD(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HEAD(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 13
Polo
             ...
               →DP Problem 14
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 15
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ok(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TAKE(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 17
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

TAKE(mark(X1), X2) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TAKE(mark(X1), X2) -> TAKE(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TAKE(x1, x2))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 17
Polo
             ...
               →DP Problem 18
Polynomial Ordering
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

TAKE(X1, mark(X2)) -> TAKE(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TAKE(X1, mark(X2)) -> TAKE(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TAKE(x1, x2))=  x2  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 17
Polo
             ...
               →DP Problem 19
Dependency Graph
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(ok(X1), ok(X2)) -> SEL(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(mark(X1), X2) -> SEL(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Polynomial Ordering
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

SEL(X1, mark(X2)) -> SEL(X1, X2)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(X1, mark(X2)) -> SEL(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SEL(x1, x2))=  x2  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 22
Dependency Graph
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 23
Polynomial Ordering
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

S(mark(X)) -> S(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(mark(X)) -> S(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(S(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
           →DP Problem 23
Polo
             ...
               →DP Problem 24
Dependency Graph
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

2ND(ok(X)) -> 2ND(X)
2ND(mark(X)) -> 2ND(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

2ND(ok(X)) -> 2ND(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(2ND(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polynomial Ordering
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

2ND(mark(X)) -> 2ND(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

2ND(mark(X)) -> 2ND(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(2ND(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
           →DP Problem 25
Polo
             ...
               →DP Problem 26
Dependency Graph
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(2nd(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(take(x1, x2))=  x1 + x2  
  POL(sel(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(2nd(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(2nd(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(take(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 28
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(2nd(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(2nd(X)) -> ACTIVE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(2nd(x1))=  1 + x1  
  POL(cons(x1, x2))=  x1  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 29
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(head(X)) -> ACTIVE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(s(x1))=  x1  
  POL(head(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 30
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(s(X)) -> ACTIVE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 31
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 32
Polynomial Ordering
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:

ACTIVE(from(X)) -> ACTIVE(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(from(X)) -> ACTIVE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(ACTIVE(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
           →DP Problem 27
Polo
             ...
               →DP Problem 33
Dependency Graph
       →DP Problem 9
Polo
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(2nd(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(2nd(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(take(x1, x2))=  x1 + x2  
  POL(sel(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(2nd(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(2nd(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(take(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 35
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(2nd(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(2nd(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(2nd(x1))=  1 + x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 36
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(head(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(head(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(head(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 37
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 38
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  x1  
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 39
Polynomial Ordering
       →DP Problem 10
Remaining


Dependency Pair:

PROPER(from(X)) -> PROPER(X)


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(from(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(from(x1))=  1 + x1  
  POL(PROPER(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
           →DP Problem 34
Polo
             ...
               →DP Problem 40
Dependency Graph
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
       →DP Problem 6
Polo
       →DP Problem 7
Polo
       →DP Problem 8
Polo
       →DP Problem 9
Polo
       →DP Problem 10
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(from(X)) -> mark(cons(X, from(s(X))))
active(head(cons(X, XS))) -> mark(X)
active(2nd(cons(X, XS))) -> mark(head(XS))
active(take(0, XS)) -> mark(nil)
active(take(s(N), cons(X, XS))) -> mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) -> mark(X)
active(sel(s(N), cons(X, XS))) -> mark(sel(N, XS))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(2nd(X)) -> 2nd(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
2nd(mark(X)) -> mark(2nd(X))
2nd(ok(X)) -> ok(2nd(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(2nd(X)) -> 2nd(proper(X))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:23 minutes