R
↳Dependency Pair Analysis
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
one new Dependency Pair is created:
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
one new Dependency Pair is created:
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
POL(cons(x1, x2)) = x2 POL(FIRST(x1, x2)) = x2 POL(s(x1)) = 1 POL(ACTIVATE(x1)) = x1 POL(n__first(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost