Term Rewriting System R:
[X, Y, Z, X1, X2]
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
ns(x1) -> ns(x1)
nfirst(x1, x2) -> nfirst(x1, x2)
nfrom(x1) -> nfrom(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes