Term Rewriting System R:
[X, Y, Z, X1, X2]
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(first(X1, X2)) -> FIRST(active(X1), X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
PROPER(first(X1, X2)) -> FIRST(proper(X1), proper(X2))
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains seven SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pairs:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
CONS(x1, x2) -> CONS(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 8
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pairs:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
FIRST(x1, x2) -> FIRST(x1, x2)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 9
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pairs:

FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
FROM(x1) -> FROM(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
S(x1) -> S(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pairs:

ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
s(x1) -> s(x1)
from(x1) -> from(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
AFS


Dependency Pairs:

PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 13
Dependency Graph
       →DP Problem 7
AFS


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Argument Filtering and Ordering


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TOP(mark(X)) -> TOP(proper(X))


The following usable rules for innermost can be oriented:

proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
first > {mark, from}
0 > nil
s > {mark, from}

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
proper(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
first(x1, x2) -> first(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x1
from(x1) -> from(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 14
Argument Filtering and Ordering


Dependency Pair:

TOP(ok(X)) -> TOP(active(X))


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TOP(ok(X)) -> TOP(active(X))


The following usable rules for innermost can be oriented:

active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
ok > {nil, active}

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
ok(x1) -> ok(x1)
active(x1) -> active(x1)
first(x1, x2) -> x1
mark(x1) -> x1
s(x1) -> x1
cons(x1, x2) -> x2
from(x1) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 14
AFS
             ...
               →DP Problem 15
Dependency Graph


Dependency Pair:


Rules:


active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(from(X)) -> from(active(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(s(X)) -> s(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:34 minutes