TRS
↳Dependency Pair Analysis
ACTIVE(c) -> F(g(c))
ACTIVE(c) -> G(c)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
F(ok(X)) -> F(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
TRS
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
F(ok(X)) -> F(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 5
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
F(ok(X)) -> F(X)
none
innermost
POL(ok(x1)) = x1 POL(F(x1)) = x1
F(ok(X)) -> F(X)
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
G(ok(X)) -> G(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳Modular Removal of Rules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
G(ok(X)) -> G(X)
none
innermost
POL(G(x1)) = x1 POL(ok(x1)) = x1
G(ok(X)) -> G(X)
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Modular Removal of Rules
→DP Problem 4
↳UsableRules
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
none
innermost
POL(g(x1)) = x1 POL(PROPER(x1)) = x1 POL(f(x1)) = x1
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
innermost
two new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
innermost
three new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Usable Rules (Innermost)
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Negative Polynomial Order
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
innermost
TOP(ok(c)) -> TOP(mark(f(g(c))))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( c ) = 1
POL( mark(x1) ) = 0
POL( f(x1) ) = 0
POL( g(x1) ) = 0
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 12
↳Dependency Graph
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
innermost
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 13
↳Modular Removal of Rules
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = 2·x1 POL(c) = 1 POL(g(x1)) = x1 POL(mark(x1)) = 2·x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1 POL(f(x1)) = 2·x1
proper(c) -> ok(c)
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 14
↳Modular Removal of Rules
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
g(ok(X)) -> ok(g(X))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = x1 POL(g(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1 POL(f(x1)) = 1 + x1
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TRS
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 15
↳Modular Removal of Rules
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
g(ok(X)) -> ok(g(X))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = x1 POL(g(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1)) = x1
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
Innermost Termination of R successfully shown.
Duration:
0:12 minutes