R
↳Dependency Pair Analysis
ACTIVE(c) -> F(g(c))
ACTIVE(c) -> G(c)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
F(ok(X)) -> F(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
F(ok(X)) -> F(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(X)) -> F(X)
POL(ok(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
G(ok(X)) -> G(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
G(ok(X)) -> G(X)
POL(G(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Nar
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(g(X)) -> PROPER(X)
POL(g(x1)) = 1 + x1 POL(PROPER(x1)) = x1 POL(f(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 7
↳Polynomial Ordering
→DP Problem 4
↳Nar
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(f(X)) -> PROPER(X)
POL(PROPER(x1)) = x1 POL(f(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 7
↳Polo
...
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Narrowing Transformation
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(ok(X)) -> TOP(active(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 10
↳Polynomial Ordering
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(mark(c)) -> TOP(ok(c))
g(ok(X)) -> ok(g(X))
f(ok(X)) -> ok(f(X))
POL(proper(x1)) = 0 POL(c) = 1 POL(g(x1)) = 0 POL(mark(x1)) = x1 POL(ok(x1)) = 0 POL(TOP(x1)) = x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 11
↳Polynomial Ordering
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(c)) -> TOP(mark(f(g(c))))
g(ok(X)) -> ok(g(X))
f(ok(X)) -> ok(f(X))
POL(proper(x1)) = 0 POL(c) = 1 POL(g(x1)) = 0 POL(mark(x1)) = 0 POL(ok(x1)) = x1 POL(TOP(x1)) = x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 12
↳Polynomial Ordering
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
g(ok(X)) -> ok(g(X))
f(ok(X)) -> ok(f(X))
POL(proper(x1)) = 0 POL(c) = 0 POL(g(x1)) = 0 POL(mark(x1)) = x1 POL(ok(x1)) = x1 POL(TOP(x1)) = x1 POL(f(x1)) = 1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 13
↳Polynomial Ordering
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = 0 POL(c) = 0 POL(g(x1)) = 0 POL(mark(x1)) = 1 POL(ok(x1)) = 0 POL(TOP(x1)) = x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Nar
→DP Problem 9
↳Nar
...
→DP Problem 14
↳Dependency Graph
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost