R
↳Dependency Pair Analysis
ACTIVE(c) -> F(g(c))
ACTIVE(c) -> G(c)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
F(ok(X)) -> F(X)
G(ok(X)) -> G(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
F(ok(X)) -> F(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
F(ok(X)) -> F(X)
F(ok(ok(X''))) -> F(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
F(ok(ok(X''))) -> F(ok(X''))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
F(ok(ok(X''))) -> F(ok(X''))
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(ok(ok(X'''')))) -> F(ok(ok(X'''')))
trivial
F(x1) -> F(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(X)) -> G(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(X)) -> G(X)
G(ok(ok(X''))) -> G(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(ok(X''))) -> G(ok(X''))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(ok(X''))) -> G(ok(X''))
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
trivial
G(x1) -> G(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(X)) -> PROPER(X)
PROPER(f(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(f(X)) -> PROPER(X)
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(g(X)) -> PROPER(X)
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(g(X)) -> PROPER(X)
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(f(f(X''))) -> PROPER(f(X''))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(f(g(X''))) -> PROPER(g(X''))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(g(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(g(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 17
↳Argument Filtering and Ordering
→DP Problem 4
↳Nar
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(g(f(g(f(g(X'''''''')))))) -> PROPER(f(g(f(g(X'''''''')))))
PROPER(g(f(g(f(f(X'''''''')))))) -> PROPER(f(g(f(f(X'''''''')))))
PROPER(g(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
PROPER(g(f(f(g(X''''''))))) -> PROPER(f(f(g(X''''''))))
PROPER(f(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(f(f(g(X'''')))) -> PROPER(f(g(X'''')))
PROPER(f(f(f(X'''')))) -> PROPER(f(f(X'''')))
PROPER(g(f(f(f(X''''''))))) -> PROPER(f(f(f(X''''''))))
PROPER(g(g(f(f(X''''''))))) -> PROPER(g(f(f(X''''''))))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(f(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(f(g(g(X''''''))))) -> PROPER(f(g(g(X''''''))))
PROPER(f(g(f(g(X''''''))))) -> PROPER(g(f(g(X''''''))))
g(ok(X)) -> ok(g(X))
f(ok(X)) -> ok(f(X))
{ok, f, g}
PROPER(x1) -> PROPER(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 18
↳Dependency Graph
→DP Problem 4
↳Nar
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Narrowing Transformation
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(ok(X)) -> TOP(active(X))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(f(c))) -> TOP(f(ok(c)))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 21
↳Rewriting Transformation
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(mark(f(c))) -> TOP(f(ok(c)))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(f(c))) -> TOP(f(ok(c)))
TOP(mark(f(c))) -> TOP(ok(f(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 23
↳Rewriting Transformation
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(c))) -> TOP(ok(g(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 24
↳Forward Instantiation Transformation
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
TOP(ok(f(g(X'')))) -> TOP(mark(g(X'')))
TOP(ok(f(g(f(X''''))))) -> TOP(mark(g(f(X''''))))
TOP(ok(f(g(g(X''''))))) -> TOP(mark(g(g(X''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 25
↳Argument Filtering and Ordering
TOP(ok(f(g(g(X''''))))) -> TOP(mark(g(g(X''''))))
TOP(ok(f(g(f(X''''))))) -> TOP(mark(g(f(X''''))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(f(g(g(X''''))))) -> TOP(mark(g(g(X''''))))
TOP(ok(f(g(f(X''''))))) -> TOP(mark(g(f(X''''))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(f(X')))) -> TOP(g(f(proper(X'))))
TOP(mark(f(f(X')))) -> TOP(f(f(proper(X'))))
TOP(ok(c)) -> TOP(mark(f(g(c))))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(f(g(X')))) -> TOP(f(g(proper(X'))))
g(ok(X)) -> ok(g(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
c > f > mark
c > g
TOP(x1) -> TOP(x1)
ok(x1) -> x1
f(x1) -> f(x1)
mark(x1) -> mark(x1)
g(x1) -> g
proper(x1) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 26
↳Dependency Graph
active(c) -> mark(f(g(c)))
active(f(g(X))) -> mark(g(X))
proper(c) -> ok(c)
proper(f(X)) -> f(proper(X))
proper(g(X)) -> g(proper(X))
f(ok(X)) -> ok(f(X))
g(ok(X)) -> ok(g(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost