R
↳Dependency Pair Analysis
2ND(cons(X, X1)) -> 2ND(cons1(X, activate(X1)))
2ND(cons(X, X1)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(ns(X)) -> ACTIVATE(X)
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(nfrom(X''))) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nfrom(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(ns(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost
ACTIVATE(ns(nfrom(ns(nfrom(ns(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(ns(X'''''''')))))
ACTIVATE(ns(nfrom(ns(nfrom(nfrom(X'''''''')))))) -> ACTIVATE(nfrom(ns(nfrom(nfrom(X'''''''')))))
ACTIVATE(ns(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
ACTIVATE(ns(nfrom(nfrom(ns(X''''''))))) -> ACTIVATE(nfrom(nfrom(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(nfrom(nfrom(ns(X'''')))) -> ACTIVATE(nfrom(ns(X'''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''')))) -> ACTIVATE(nfrom(nfrom(X'''')))
ACTIVATE(ns(nfrom(nfrom(nfrom(X''''''))))) -> ACTIVATE(nfrom(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(nfrom(nfrom(X''''''))))) -> ACTIVATE(ns(nfrom(nfrom(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nfrom(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nfrom(ns(ns(X''''''))))) -> ACTIVATE(nfrom(ns(ns(X''''''))))
ACTIVATE(nfrom(ns(nfrom(ns(X''''''))))) -> ACTIVATE(ns(nfrom(ns(X''''''))))
trivial
ACTIVATE(x1) -> ACTIVATE(x1)
nfrom(x1) -> nfrom(x1)
ns(x1) -> ns(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
innermost