R
↳Removing Redundant Rules for Innermost Termination
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
FROM(X) -> CONS(X, nfrom(s(X)))
FROM(X) -> S(X)
QUOTE(ns(X)) -> QUOTE(activate(X))
QUOTE(ns(X)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(n0) -> 0'
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)
ACTIVATE(nnil) -> NIL
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nsel(X1, X2)) -> SEL(X1, X2)
QUOTE1(ncons(X, Z)) -> QUOTE(activate(X))
QUOTE1(ncons(X, Z)) -> ACTIVATE(X)
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
QUOTE1(ncons(X, Z)) -> ACTIVATE(Z)
QUOTE1(nfirst(X, Z)) -> ACTIVATE(X)
QUOTE1(nfirst(X, Z)) -> ACTIVATE(Z)
UNQUOTE(01) -> 0'
UNQUOTE(s1(X)) -> S(unquote(X))
UNQUOTE(s1(X)) -> UNQUOTE(X)
UNQUOTE1(nil1) -> NIL
UNQUOTE1(cons1(X, Z)) -> FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) -> UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
FCONS(X, Z) -> CONS(X, Z)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Negative Polynomial Order
→DP Problem 2
↳SCP
→DP Problem 3
↳NonTerm
QUOTE(ns(X)) -> QUOTE(activate(X))
sel(X1, X2) -> nsel(X1, X2)
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
0 -> n0
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
nil -> nnil
fcons(X, Z) -> cons(X, Z)
QUOTE(ns(X)) -> QUOTE(activate(X))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
sel(X1, X2) -> nsel(X1, X2)
POL( QUOTE(x1) ) = x1
POL( ns(x1) ) = x1 + 1
POL( activate(x1) ) = x1
POL( nfirst(x1, x2) ) = 0
POL( first(x1, x2) ) = 0
POL( nfrom(x1) ) = 0
POL( from(x1) ) = 0
POL( n0 ) = 0
POL( 0 ) = 0
POL( ncons(x1, x2) ) = 0
POL( cons(x1, x2) ) = 0
POL( nnil ) = 0
POL( nil ) = 0
POL( s(x1) ) = x1 + 1
POL( nsel(x1, x2) ) = 0
POL( sel(x1, x2) ) = 0
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳SCP
→DP Problem 3
↳NonTerm
sel(X1, X2) -> nsel(X1, X2)
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
0 -> n0
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
nil -> nnil
fcons(X, Z) -> cons(X, Z)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳NonTerm
UNQUOTE(s1(X)) -> UNQUOTE(X)
sel(X1, X2) -> nsel(X1, X2)
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
0 -> n0
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
nil -> nnil
fcons(X, Z) -> cons(X, Z)
|
|
trivial
s1(x1) -> s1(x1)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳SCP
→DP Problem 3
↳Non Termination
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(X1, X2) -> nsel(X1, X2)
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
0 -> n0
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
nil -> nnil
fcons(X, Z) -> cons(X, Z)
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(X1, X2) -> nsel(X1, X2)
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
0 -> n0
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
nil -> nnil
fcons(X, Z) -> cons(X, Z)