R
↳Dependency Pair Analysis
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(0, Z) -> NIL
FIRST(s(X), cons(Y, Z)) -> CONS(Y, nfirst(X, activate(Z)))
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FROM(X) -> CONS(X, nfrom(s(X)))
FROM(X) -> S(X)
SEL1(s(X), cons(Y, Z)) -> SEL1(X, activate(Z))
SEL1(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL1(0, cons(X, Z)) -> QUOTE(X)
FIRST1(s(X), cons(Y, Z)) -> QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) -> FIRST1(X, activate(Z))
FIRST1(s(X), cons(Y, Z)) -> ACTIVATE(Z)
QUOTE(ns(X)) -> QUOTE(activate(X))
QUOTE(ns(X)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> SEL1(activate(X), activate(Z))
QUOTE(nsel(X, Z)) -> ACTIVATE(X)
QUOTE(nsel(X, Z)) -> ACTIVATE(Z)
QUOTE1(ncons(X, Z)) -> QUOTE(activate(X))
QUOTE1(ncons(X, Z)) -> ACTIVATE(X)
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
QUOTE1(ncons(X, Z)) -> ACTIVATE(Z)
QUOTE1(nfirst(X, Z)) -> FIRST1(activate(X), activate(Z))
QUOTE1(nfirst(X, Z)) -> ACTIVATE(X)
QUOTE1(nfirst(X, Z)) -> ACTIVATE(Z)
UNQUOTE(01) -> 0'
UNQUOTE(s1(X)) -> S(unquote(X))
UNQUOTE(s1(X)) -> UNQUOTE(X)
UNQUOTE1(nil1) -> NIL
UNQUOTE1(cons1(X, Z)) -> FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) -> UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
FCONS(X, Z) -> CONS(X, Z)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(n0) -> 0'
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)
ACTIVATE(nnil) -> NIL
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nsel(X1, X2)) -> SEL(X1, X2)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(X)) -> QUOTE(activate(X))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
eight new Dependency Pairs are created:
QUOTE(ns(X)) -> QUOTE(activate(X))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rewriting Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(n0)) -> QUOTE(0)
QUOTE(ns(n0)) -> QUOTE(n0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 6
↳Rewriting Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(cons(X1', X2'))
QUOTE(ns(ncons(X1', X2'))) -> QUOTE(ncons(X1', X2'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 7
↳Rewriting Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(nnil)) -> QUOTE(nil)
QUOTE(ns(nnil)) -> QUOTE(nnil)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 8
↳Rewriting Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(ns(X''))) -> QUOTE(s(X''))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 9
↳Narrowing Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(nfirst(X1', X2'))) -> QUOTE(first(X1', X2'))
QUOTE(ns(nfirst(X1'', X2''))) -> QUOTE(nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 10
↳Narrowing Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOTE(ns(nfrom(X''))) -> QUOTE(from(X''))
QUOTE(ns(nfrom(X'''))) -> QUOTE(cons(X''', nfrom(s(X'''))))
QUOTE(ns(nfrom(X'''))) -> QUOTE(nfrom(X'''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 11
↳Rewriting Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(nfrom(X'''))) -> QUOTE(cons(X''', nfrom(s(X'''))))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(nfrom(X'''))) -> QUOTE(cons(X''', nfrom(s(X'''))))
QUOTE(ns(nfrom(X'''))) -> QUOTE(ncons(X''', nfrom(s(X'''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 12
↳Narrowing Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE(ns(nsel(X1', X2'))) -> QUOTE(sel(X1', X2'))
QUOTE(ns(nsel(X1'', X2''))) -> QUOTE(nsel(X1'', X2''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
QUOTE(ns(X'')) -> QUOTE(X'')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOTE(ns(X'')) -> QUOTE(X'')
QUOTE(ns(ns(X''''))) -> QUOTE(ns(X''''))
QUOTE(ns(ns(ns(X'''')))) -> QUOTE(ns(ns(X'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 14
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
QUOTE(ns(ns(ns(X'''')))) -> QUOTE(ns(ns(X'''')))
QUOTE(ns(ns(X''''))) -> QUOTE(ns(X''''))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
QUOTE(ns(ns(ns(X'''')))) -> QUOTE(ns(ns(X'''')))
QUOTE(ns(ns(X''''))) -> QUOTE(ns(X''''))
QUOTE(ns(ns(X''))) -> QUOTE(ns(X''))
QUOTE(x1) -> QUOTE(x1)
ns(x1) -> ns(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Rw
...
→DP Problem 15
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
UNQUOTE(s1(X)) -> UNQUOTE(X)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
UNQUOTE(s1(X)) -> UNQUOTE(X)
UNQUOTE(s1(s1(X''))) -> UNQUOTE(s1(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
UNQUOTE(s1(s1(X''))) -> UNQUOTE(s1(X''))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
UNQUOTE(s1(s1(X''))) -> UNQUOTE(s1(X''))
UNQUOTE(s1(s1(s1(X'''')))) -> UNQUOTE(s1(s1(X'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 17
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
UNQUOTE(s1(s1(s1(X'''')))) -> UNQUOTE(s1(s1(X'''')))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
UNQUOTE(s1(s1(s1(X'''')))) -> UNQUOTE(s1(s1(X'''')))
UNQUOTE(x1) -> UNQUOTE(x1)
s1(x1) -> s1(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 18
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
eight new Dependency Pairs are created:
QUOTE1(ncons(X, Z)) -> QUOTE1(activate(Z))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, n0)) -> QUOTE1(0)
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(cons(X1', X2'))
QUOTE1(ncons(X, nnil)) -> QUOTE1(nil)
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, nnil)) -> QUOTE1(nil)
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(cons(X1', X2'))
QUOTE1(ncons(X, n0)) -> QUOTE1(0)
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, n0)) -> QUOTE1(0)
QUOTE1(ncons(X, n0)) -> QUOTE1(n0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 20
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, nnil)) -> QUOTE1(nil)
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(cons(X1', X2'))
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(cons(X1', X2'))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 21
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, nnil)) -> QUOTE1(nil)
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nnil)) -> QUOTE1(nil)
QUOTE1(ncons(X, nnil)) -> QUOTE1(nnil)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 22
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(s(X''))
QUOTE1(ncons(X, ns(X''))) -> QUOTE1(ns(X''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 23
↳Narrowing Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nfirst(X1', X2'))) -> QUOTE1(first(X1', X2'))
QUOTE1(ncons(X, nfirst(X1'', X2''))) -> QUOTE1(nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 24
↳Narrowing Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOTE1(ncons(X, nfrom(X''))) -> QUOTE1(from(X''))
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(cons(X''', nfrom(s(X'''))))
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(nfrom(X'''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 25
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(cons(X''', nfrom(s(X'''))))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(cons(X''', nfrom(s(X'''))))
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(s(X'''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 26
↳Rewriting Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(s(X'''))))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(s(X'''))))
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(ns(X'''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 27
↳Narrowing Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(ns(X'''))))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nsel(X1', X2'))) -> QUOTE1(sel(X1', X2'))
QUOTE1(ncons(X, nsel(X1'', X2''))) -> QUOTE1(nsel(X1'', X2''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 28
↳Forward Instantiation Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(ns(X'''))))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
QUOTE1(ncons(X, Z')) -> QUOTE1(Z')
QUOTE1(ncons(X, ncons(X'', Z'''))) -> QUOTE1(ncons(X'', Z'''))
QUOTE1(ncons(X, ncons(X'', ncons(X1''', X2''')))) -> QUOTE1(ncons(X'', ncons(X1''', X2''')))
QUOTE1(ncons(X, ncons(X'', nfrom(X''''')))) -> QUOTE1(ncons(X'', nfrom(X''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 29
↳Instantiation Transformation
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(ns(X'''))))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
QUOTE1(ncons(X, nfrom(X'''))) -> QUOTE1(ncons(X''', nfrom(ns(X'''))))
QUOTE1(ncons(X', nfrom(ns(X')))) -> QUOTE1(ncons(ns(X'), nfrom(ns(ns(X')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
QUOTE1(ncons(X', nfrom(ns(X')))) -> QUOTE1(ncons(ns(X'), nfrom(ns(ns(X')))))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 30
↳Argument Filtering and Ordering
→DP Problem 4
↳Remaining
QUOTE1(ncons(X, ncons(X'', ncons(X1''', X2''')))) -> QUOTE1(ncons(X'', ncons(X1''', X2''')))
QUOTE1(ncons(X, ncons(X'', Z'''))) -> QUOTE1(ncons(X'', Z'''))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
QUOTE1(ncons(X, ncons(X'', ncons(X1''', X2''')))) -> QUOTE1(ncons(X'', ncons(X1''', X2''')))
QUOTE1(ncons(X, ncons(X'', Z'''))) -> QUOTE1(ncons(X'', Z'''))
QUOTE1(ncons(X, ncons(X1', X2'))) -> QUOTE1(ncons(X1', X2'))
QUOTE1(x1) -> QUOTE1(x1)
ncons(x1, x2) -> ncons(x1, x2)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 19
↳Rw
...
→DP Problem 31
↳Dependency Graph
→DP Problem 4
↳Remaining
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
QUOTE1(ncons(X', nfrom(ns(X')))) -> QUOTE1(ncons(ns(X'), nfrom(ns(ns(X')))))
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost
UNQUOTE1(cons1(X, Z)) -> UNQUOTE1(Z)
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
sel(0, cons(X, Z)) -> X
sel(X1, X2) -> nsel(X1, X2)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
sel1(0, cons(X, Z)) -> quote(X)
first1(0, Z) -> nil1
first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
quote(n0) -> 01
quote(ns(X)) -> s1(quote(activate(X)))
quote(nsel(X, Z)) -> sel1(activate(X), activate(Z))
quote1(ncons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
quote1(nnil) -> nil1
quote1(nfirst(X, Z)) -> first1(activate(X), activate(Z))
unquote(01) -> 0
unquote(s1(X)) -> s(unquote(X))
unquote1(nil1) -> nil
unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
fcons(X, Z) -> cons(X, Z)
0 -> n0
cons(X1, X2) -> ncons(X1, X2)
nil -> nnil
s(X) -> ns(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(n0) -> 0
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(nnil) -> nil
activate(ns(X)) -> s(X)
activate(nsel(X1, X2)) -> sel(X1, X2)
activate(X) -> X
innermost