R
↳Dependency Pair Analysis
AF(X) -> AIF(mark(X), c, f(true))
AF(X) -> MARK(X)
AIF(true, X, Y) -> MARK(X)
AIF(false, X, Y) -> MARK(Y)
MARK(f(X)) -> AF(mark(X))
MARK(f(X)) -> MARK(X)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> MARK(X2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(if(X1, X2, X3)) -> MARK(X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(false, X, Y) -> MARK(Y)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
MARK(f(X)) -> MARK(X)
AF(X) -> MARK(X)
MARK(f(X)) -> AF(mark(X))
AIF(true, X, Y) -> MARK(X)
AF(X) -> AIF(mark(X), c, f(true))
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost
AIF(false, X, Y) -> MARK(Y)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(c) = 0 POL(MARK(x1)) = x1 POL(false) = 1 POL(a__if(x1, x2, x3)) = x1 + x2 + x3 POL(true) = 0 POL(A__F(x1)) = x1 POL(mark(x1)) = x1 POL(f(x1)) = x1 POL(a__f(x1)) = x1 POL(A__IF(x1, x2, x3)) = x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
MARK(if(X1, X2, X3)) -> MARK(X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
MARK(f(X)) -> MARK(X)
AF(X) -> MARK(X)
MARK(f(X)) -> AF(mark(X))
AIF(true, X, Y) -> MARK(X)
AF(X) -> AIF(mark(X), c, f(true))
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost
MARK(f(X)) -> MARK(X)
MARK(f(X)) -> AF(mark(X))
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(c) = 0 POL(MARK(x1)) = x1 POL(false) = 0 POL(a__if(x1, x2, x3)) = x1 + x2 + x3 POL(true) = 0 POL(A__F(x1)) = x1 POL(mark(x1)) = x1 POL(f(x1)) = 1 + x1 POL(a__f(x1)) = 1 + x1 POL(A__IF(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
MARK(if(X1, X2, X3)) -> MARK(X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
AF(X) -> MARK(X)
AIF(true, X, Y) -> MARK(X)
AF(X) -> AIF(mark(X), c, f(true))
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 4
↳Narrowing Transformation
MARK(if(X1, X2, X3)) -> MARK(X1)
AIF(true, X, Y) -> MARK(X)
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
MARK(if(X1, X2, X3)) -> MARK(X2)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost
10 new Dependency Pairs are created:
MARK(if(X1, X2, X3)) -> AIF(mark(X1), mark(X2), X3)
MARK(if(f(X'), X2, X3)) -> AIF(af(mark(X')), mark(X2), X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), mark(X2''), X3''), mark(X2), X3)
MARK(if(c, X2, X3)) -> AIF(c, mark(X2), X3)
MARK(if(true, X2, X3)) -> AIF(true, mark(X2), X3)
MARK(if(false, X2, X3)) -> AIF(false, mark(X2), X3)
MARK(if(X1, f(X'), X3)) -> AIF(mark(X1), af(mark(X')), X3)
MARK(if(X1, if(X1'', X2'', X3''), X3)) -> AIF(mark(X1), aif(mark(X1''), mark(X2''), X3''), X3)
MARK(if(X1, c, X3)) -> AIF(mark(X1), c, X3)
MARK(if(X1, true, X3)) -> AIF(mark(X1), true, X3)
MARK(if(X1, false, X3)) -> AIF(mark(X1), false, X3)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
MARK(if(X1, false, X3)) -> AIF(mark(X1), false, X3)
MARK(if(X1, true, X3)) -> AIF(mark(X1), true, X3)
MARK(if(X1, c, X3)) -> AIF(mark(X1), c, X3)
MARK(if(X1, if(X1'', X2'', X3''), X3)) -> AIF(mark(X1), aif(mark(X1''), mark(X2''), X3''), X3)
MARK(if(X1, f(X'), X3)) -> AIF(mark(X1), af(mark(X')), X3)
MARK(if(true, X2, X3)) -> AIF(true, mark(X2), X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), mark(X2''), X3''), mark(X2), X3)
AIF(true, X, Y) -> MARK(X)
MARK(if(f(X'), X2, X3)) -> AIF(af(mark(X')), mark(X2), X3)
MARK(if(X1, X2, X3)) -> MARK(X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost
MARK(if(f(X'), X2, X3)) -> AIF(af(mark(X')), mark(X2), X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
POL(if(x1, x2, x3)) = x1 + x2 + x3 POL(c) = 0 POL(MARK(x1)) = x1 POL(false) = 0 POL(a__if(x1, x2, x3)) = x1 + x2 + x3 POL(true) = 0 POL(mark(x1)) = x1 POL(f(x1)) = 1 + x1 POL(a__f(x1)) = 1 + x1 POL(A__IF(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 6
↳Remaining Obligation(s)
MARK(if(X1, false, X3)) -> AIF(mark(X1), false, X3)
MARK(if(X1, true, X3)) -> AIF(mark(X1), true, X3)
MARK(if(X1, c, X3)) -> AIF(mark(X1), c, X3)
MARK(if(X1, if(X1'', X2'', X3''), X3)) -> AIF(mark(X1), aif(mark(X1''), mark(X2''), X3''), X3)
MARK(if(X1, f(X'), X3)) -> AIF(mark(X1), af(mark(X')), X3)
MARK(if(true, X2, X3)) -> AIF(true, mark(X2), X3)
MARK(if(if(X1'', X2'', X3''), X2, X3)) -> AIF(aif(mark(X1''), mark(X2''), X3''), mark(X2), X3)
AIF(true, X, Y) -> MARK(X)
MARK(if(X1, X2, X3)) -> MARK(X2)
MARK(if(X1, X2, X3)) -> MARK(X1)
af(X) -> aif(mark(X), c, f(true))
af(X) -> f(X)
aif(true, X, Y) -> mark(X)
aif(false, X, Y) -> mark(Y)
aif(X1, X2, X3) -> if(X1, X2, X3)
mark(f(X)) -> af(mark(X))
mark(if(X1, X2, X3)) -> aif(mark(X1), mark(X2), X3)
mark(c) -> c
mark(true) -> true
mark(false) -> false
innermost