R
↳Dependency Pair Analysis
F(X) -> IF(X, c, nf(ntrue))
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ntrue) -> TRUE
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> F(activate(X))
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(nf(X''))) -> F(f(activate(X'')))
ACTIVATE(nf(ntrue)) -> F(true)
ACTIVATE(nf(X'')) -> F(X'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rewriting Transformation
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(ntrue)) -> F(true)
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))
ACTIVATE(nf(nf(X''))) -> F(f(activate(X'')))
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nf(ntrue)) -> F(true)
ACTIVATE(nf(ntrue)) -> F(ntrue)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 3
↳Narrowing Transformation
ACTIVATE(nf(ntrue)) -> F(ntrue)
ACTIVATE(nf(nf(X''))) -> F(f(activate(X'')))
ACTIVATE(nf(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))
ACTIVATE(nf(X'')) -> F(X'')
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
five new Dependency Pairs are created:
ACTIVATE(nf(nf(X''))) -> F(f(activate(X'')))
ACTIVATE(nf(nf(X'''))) -> F(if(activate(X'''), c, nf(ntrue)))
ACTIVATE(nf(nf(X'''))) -> F(nf(activate(X''')))
ACTIVATE(nf(nf(nf(X')))) -> F(f(f(activate(X'))))
ACTIVATE(nf(nf(ntrue))) -> F(f(true))
ACTIVATE(nf(nf(X'''))) -> F(f(X'''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 4
↳Rewriting Transformation
ACTIVATE(nf(nf(X'''))) -> F(f(X'''))
ACTIVATE(nf(nf(ntrue))) -> F(f(true))
ACTIVATE(nf(nf(nf(X')))) -> F(f(f(activate(X'))))
ACTIVATE(nf(nf(X'''))) -> F(nf(activate(X''')))
ACTIVATE(nf(nf(X'''))) -> F(if(activate(X'''), c, nf(ntrue)))
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))
ACTIVATE(nf(ntrue)) -> F(ntrue)
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nf(nf(ntrue))) -> F(f(true))
ACTIVATE(nf(nf(ntrue))) -> F(f(ntrue))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 5
↳Instantiation Transformation
ACTIVATE(nf(nf(ntrue))) -> F(f(ntrue))
ACTIVATE(nf(nf(nf(X')))) -> F(f(f(activate(X'))))
ACTIVATE(nf(nf(X'''))) -> F(nf(activate(X''')))
ACTIVATE(nf(nf(X'''))) -> F(if(activate(X'''), c, nf(ntrue)))
ACTIVATE(nf(ntrue)) -> F(ntrue)
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
F(X) -> IF(X, c, nf(ntrue))
ACTIVATE(nf(nf(X'''))) -> F(f(X'''))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
one new Dependency Pair is created:
IF(false, X, Y) -> ACTIVATE(Y)
IF(false, c, nf(ntrue)) -> ACTIVATE(nf(ntrue))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 6
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(X'''))) -> F(f(X'''))
ACTIVATE(nf(nf(nf(X')))) -> F(f(f(activate(X'))))
ACTIVATE(nf(nf(X'''))) -> F(nf(activate(X''')))
ACTIVATE(nf(nf(X'''))) -> F(if(activate(X'''), c, nf(ntrue)))
ACTIVATE(nf(ntrue)) -> F(ntrue)
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(X)) -> ACTIVATE(X)
IF(false, c, nf(ntrue)) -> ACTIVATE(nf(ntrue))
F(X) -> IF(X, c, nf(ntrue))
ACTIVATE(nf(nf(ntrue))) -> F(f(ntrue))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
one new Dependency Pair is created:
F(X) -> IF(X, c, nf(ntrue))
F(false) -> IF(false, c, nf(ntrue))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 7
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(ntrue))) -> F(f(ntrue))
ACTIVATE(nf(nf(nf(X')))) -> F(f(f(activate(X'))))
ACTIVATE(nf(nf(X'''))) -> F(if(activate(X'''), c, nf(ntrue)))
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(X)) -> ACTIVATE(X)
IF(false, c, nf(ntrue)) -> ACTIVATE(nf(ntrue))
F(false) -> IF(false, c, nf(ntrue))
ACTIVATE(nf(nf(X'''))) -> F(f(X'''))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
five new Dependency Pairs are created:
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nf(X''''))) -> ACTIVATE(nf(X''''))
ACTIVATE(nf(nf(nf(X''''')))) -> ACTIVATE(nf(nf(X''''')))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
ACTIVATE(nf(nf(nf(ntrue)))) -> ACTIVATE(nf(nf(ntrue)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 8
↳Instantiation Transformation
ACTIVATE(nf(X'')) -> F(X'')
IF(false, c, nf(ntrue)) -> ACTIVATE(nf(ntrue))
F(false) -> IF(false, c, nf(ntrue))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nf(X'')) -> F(X'')
ACTIVATE(nf(ntrue)) -> F(ntrue)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 9
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(nf(ntrue)))) -> ACTIVATE(nf(nf(ntrue)))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
ACTIVATE(nf(nf(nf(X''''')))) -> ACTIVATE(nf(nf(X''''')))
ACTIVATE(nf(nf(X''''))) -> ACTIVATE(nf(X''''))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
five new Dependency Pairs are created:
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''')))))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 10
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(nf(nf(X''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
ACTIVATE(nf(nf(nf(X''''')))) -> ACTIVATE(nf(nf(X''''')))
ACTIVATE(nf(nf(X''''))) -> ACTIVATE(nf(X''''))
ACTIVATE(nf(nf(nf(ntrue)))) -> ACTIVATE(nf(nf(ntrue)))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
nine new Dependency Pairs are created:
ACTIVATE(nf(nf(X''''))) -> ACTIVATE(nf(X''''))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 11
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(nf(nf(X''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
ACTIVATE(nf(nf(nf(X''''')))) -> ACTIVATE(nf(nf(X''''')))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
12 new Dependency Pairs are created:
ACTIVATE(nf(nf(nf(X''''')))) -> ACTIVATE(nf(nf(X''''')))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(nf(X''''''''')))))))) -> ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''')))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(ntrue))))))) -> ACTIVATE(nf(nf(nf(nf(nf(ntrue))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 12
↳Polynomial Ordering
ACTIVATE(nf(nf(nf(nf(nf(nf(ntrue))))))) -> ACTIVATE(nf(nf(nf(nf(nf(ntrue))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(nf(X''''''''')))))))) -> ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''')))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(nf(nf(X''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost
ACTIVATE(nf(nf(nf(nf(nf(nf(ntrue))))))) -> ACTIVATE(nf(nf(nf(nf(nf(ntrue))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(nf(X''''''''')))))))) -> ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''')))))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''''')))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X''''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X''''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(ntrue)))))) -> ACTIVATE(nf(nf(nf(nf(ntrue)))))
ACTIVATE(nf(nf(nf(nf(nf(nf(X'''''''))))))) -> ACTIVATE(nf(nf(nf(nf(nf(X'''''''))))))
ACTIVATE(nf(nf(nf(nf(nf(X''''''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''''''')))))
ACTIVATE(nf(nf(nf(nf(X''''''''))))) -> ACTIVATE(nf(nf(nf(X''''''''))))
ACTIVATE(nf(nf(nf(nf(nf(X'''''')))))) -> ACTIVATE(nf(nf(nf(nf(X'''''')))))
ACTIVATE(nf(nf(nf(nf(X'''''''))))) -> ACTIVATE(nf(nf(nf(X'''''''))))
ACTIVATE(nf(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(nf(nf(nf(nf(ntrue))))) -> ACTIVATE(nf(nf(nf(ntrue))))
ACTIVATE(nf(nf(nf(X'''''')))) -> ACTIVATE(nf(nf(X'''''')))
ACTIVATE(nf(nf(nf(nf(nf(X''''')))))) -> ACTIVATE(nf(nf(nf(nf(X''''')))))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(nf(nf(X'''))))) -> ACTIVATE(nf(nf(nf(X'''))))
POL(n__f(x1)) = 1 + x1 POL(n__true) = 0 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 13
↳Dependency Graph
f(X) -> if(X, c, nf(ntrue))
f(X) -> nf(X)
if(true, X, Y) -> X
if(false, X, Y) -> activate(Y)
true -> ntrue
activate(nf(X)) -> f(activate(X))
activate(ntrue) -> true
activate(X) -> X
innermost