R
↳Dependency Pair Analysis
ACTIVE(f(X)) -> IF(X, c, f(true))
ACTIVE(f(X)) -> F(true)
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> IF(X1, active(X2), X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
F(x1) -> F(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(x1, x2, x3) -> IF(x1, x2, x3)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(x1) -> ACTIVE(x1)
if(x1, x2, x3) -> if(x1, x2, x3)
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳Nar
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
PROPER(x1) -> PROPER(x1)
f(x1) -> f(x1)
if(x1, x2, x3) -> if(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 9
↳Dependency Graph
→DP Problem 5
↳Nar
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
five new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(true)) -> TOP(ok(true))
TOP(mark(false)) -> TOP(ok(false))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 10
↳Narrowing Transformation
TOP(mark(false)) -> TOP(ok(false))
TOP(mark(true)) -> TOP(ok(true))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
six new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(f(X''))) -> TOP(mark(if(X'', c, f(true))))
TOP(ok(if(true, X'', Y'))) -> TOP(mark(X''))
TOP(ok(if(false, X'', Y'))) -> TOP(mark(Y'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(active(X1'), X2', X3'))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(X1', active(X2'), X3'))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Remaining Obligation(s)
TOP(ok(if(X1', X2', X3'))) -> TOP(if(X1', active(X2'), X3'))
TOP(ok(if(X1', X2', X3'))) -> TOP(if(active(X1'), X2', X3'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(if(false, X'', Y'))) -> TOP(mark(Y'))
TOP(ok(if(true, X'', Y'))) -> TOP(mark(X''))
TOP(ok(f(X''))) -> TOP(mark(if(X'', c, f(true))))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(if(X1', X2', X3'))) -> TOP(if(proper(X1'), proper(X2'), proper(X3')))
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost