Term Rewriting System R:
[X, Y, Z]
f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(X) -> G(X)
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nf(X)) -> F(X)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Usable Rules (Innermost)`
`       →DP Problem 2`
`         ↳UsableRules`

Dependency Pair:

G(s(X)) -> G(X)

Rules:

f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X

Strategy:

innermost

As we are in the innermost case, we can delete all 8 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`           →DP Problem 3`
`             ↳Size-Change Principle`
`       →DP Problem 2`
`         ↳UsableRules`

Dependency Pair:

G(s(X)) -> G(X)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. G(s(X)) -> G(X)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳Usable Rules (Innermost)`

Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))

Rules:

f(X) -> cons(X, nf(g(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(X)
activate(X) -> X

Strategy:

innermost

As we are in the innermost case, we can delete all 2 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳UsableRules`
`           →DP Problem 4`
`             ↳Size-Change Principle`

Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))

Rules:

f(X) -> nf(X)
f(X) -> cons(X, nf(g(X)))
g(s(X)) -> s(s(g(X)))
g(0) -> s(0)
activate(X) -> X
activate(nf(X)) -> f(X)

Strategy:

innermost

We number the DPs as follows:
1. SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes