R
↳Dependency Pair Analysis
G(s(X)) -> G(X)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ng(X)) -> G(activate(X))
ACTIVATE(ng(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
G(s(X)) -> G(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
one new Dependency Pair is created:
G(s(X)) -> G(X)
G(s(s(X''))) -> G(s(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
G(s(s(X''))) -> G(s(X''))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
one new Dependency Pair is created:
G(s(s(X''))) -> G(s(X''))
G(s(s(s(X'''')))) -> G(s(s(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
G(s(s(s(X'''')))) -> G(s(s(X'''')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
G(s(s(s(X'''')))) -> G(s(s(X'''')))
POL(G(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(ng(X''))) -> ACTIVATE(ng(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(nf(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(ng(X)) -> ACTIVATE(X)
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ng(X)) -> ACTIVATE(X)
ACTIVATE(ng(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(nf(ng(X''))) -> ACTIVATE(ng(X''))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(nf(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nf(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ng(ng(X''))) -> ACTIVATE(ng(X''))
ACTIVATE(ng(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(ng(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(ng(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(ng(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ng(nf(nf(ng(X''''''))))) -> ACTIVATE(nf(nf(ng(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
ACTIVATE(ng(nf(nf(ng(X''''''))))) -> ACTIVATE(nf(nf(ng(X''''''))))
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ng(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(ng(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ng(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(ng(nf(ng(ng(X''''''))))) -> ACTIVATE(nf(ng(ng(X''''''))))
ACTIVATE(ng(nf(ng(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ng(nf(nf(X'''''''')))))
ACTIVATE(ng(nf(ng(nf(ng(X'''''''')))))) -> ACTIVATE(nf(ng(nf(ng(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 13
↳Polynomial Ordering
→DP Problem 3
↳Nar
ACTIVATE(ng(nf(ng(nf(ng(X'''''''')))))) -> ACTIVATE(nf(ng(nf(ng(X'''''''')))))
ACTIVATE(ng(nf(ng(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ng(nf(nf(X'''''''')))))
ACTIVATE(ng(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
ACTIVATE(ng(nf(nf(ng(X''''''))))) -> ACTIVATE(nf(nf(ng(X''''''))))
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ng(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ng(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(ng(nf(ng(ng(X''''''))))) -> ACTIVATE(nf(ng(ng(X''''''))))
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
ACTIVATE(ng(nf(ng(nf(ng(X'''''''')))))) -> ACTIVATE(nf(ng(nf(ng(X'''''''')))))
ACTIVATE(ng(nf(ng(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ng(nf(nf(X'''''''')))))
ACTIVATE(ng(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
ACTIVATE(ng(nf(nf(ng(X''''''))))) -> ACTIVATE(nf(nf(ng(X''''''))))
ACTIVATE(ng(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ng(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(ng(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(ng(nf(ng(ng(X''''''))))) -> ACTIVATE(nf(ng(ng(X''''''))))
POL(n__f(x1)) = x1 POL(n__g(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 14
↳Dependency Graph
→DP Problem 3
↳Nar
ACTIVATE(nf(ng(nf(nf(X''''''))))) -> ACTIVATE(ng(nf(nf(X''''''))))
ACTIVATE(nf(nf(ng(X'''')))) -> ACTIVATE(nf(ng(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(ng(ng(X'''')))) -> ACTIVATE(ng(ng(X'''')))
ACTIVATE(nf(ng(nf(ng(X''''''))))) -> ACTIVATE(ng(nf(ng(X''''''))))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 15
↳Polynomial Ordering
→DP Problem 3
↳Nar
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
POL(n__f(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 16
↳Dependency Graph
→DP Problem 3
↳Nar
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, nf(X''))) -> SEL(X, f(activate(X'')))
SEL(s(X), cons(Y, ng(X''))) -> SEL(X, g(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Narrowing Transformation
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, ng(X''))) -> SEL(X, g(activate(X'')))
SEL(s(X), cons(Y, nf(X''))) -> SEL(X, f(activate(X'')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
five new Dependency Pairs are created:
SEL(s(X), cons(Y, nf(X''))) -> SEL(X, f(activate(X'')))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, nf(activate(X''')))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Nar
...
→DP Problem 18
↳Narrowing Transformation
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, ng(X''))) -> SEL(X, g(activate(X'')))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
four new Dependency Pairs are created:
SEL(s(X), cons(Y, ng(X''))) -> SEL(X, g(activate(X'')))
SEL(s(X), cons(Y, ng(X'''))) -> SEL(X, ng(activate(X''')))
SEL(s(X), cons(Y, ng(nf(X''')))) -> SEL(X, g(f(activate(X'''))))
SEL(s(X), cons(Y, ng(ng(X''')))) -> SEL(X, g(g(activate(X'''))))
SEL(s(X), cons(Y, ng(X'''))) -> SEL(X, g(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
SEL(s(X), cons(Y, ng(X'''))) -> SEL(X, g(X'''))
SEL(s(X), cons(Y, ng(ng(X''')))) -> SEL(X, g(g(activate(X'''))))
SEL(s(X), cons(Y, ng(nf(X''')))) -> SEL(X, g(f(activate(X'''))))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
seven new Dependency Pairs are created:
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(X''''')))) -> SEL(s(X''), cons(Y'', nf(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(nf(X'''''))))) -> SEL(s(X''), cons(Y'', nf(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(ng(X'''''))))) -> SEL(s(X''), cons(Y'', nf(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(nf(X'''''))))) -> SEL(s(X''), cons(Y'', ng(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(ng(X'''''))))) -> SEL(s(X''), cons(Y'', ng(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(X''''')))) -> SEL(s(X''), cons(Y'', ng(X''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
SEL(s(s(X'')), cons(Y, cons(Y'', ng(X''''')))) -> SEL(s(X''), cons(Y'', ng(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(ng(X'''''))))) -> SEL(s(X''), cons(Y'', ng(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(nf(X'''''))))) -> SEL(s(X''), cons(Y'', ng(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(ng(X'''''))))) -> SEL(s(X''), cons(Y'', nf(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(nf(X'''''))))) -> SEL(s(X''), cons(Y'', nf(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(X''''')))) -> SEL(s(X''), cons(Y'', nf(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(X), cons(Y, ng(ng(X''')))) -> SEL(X, g(g(activate(X'''))))
SEL(s(X), cons(Y, ng(nf(X''')))) -> SEL(X, g(f(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, ng(X'''))) -> SEL(X, g(X'''))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
no new Dependency Pairs are created.
SEL(s(X), cons(Y, ng(X'''))) -> SEL(X, g(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Nar
...
→DP Problem 21
↳Polynomial Ordering
SEL(s(s(X'')), cons(Y, cons(Y'', ng(ng(X'''''))))) -> SEL(s(X''), cons(Y'', ng(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(nf(X'''''))))) -> SEL(s(X''), cons(Y'', ng(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(ng(X'''''))))) -> SEL(s(X''), cons(Y'', nf(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(nf(X'''''))))) -> SEL(s(X''), cons(Y'', nf(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(X''''')))) -> SEL(s(X''), cons(Y'', nf(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(X), cons(Y, ng(ng(X''')))) -> SEL(X, g(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, ng(nf(X''')))) -> SEL(X, g(f(activate(X'''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(X''''')))) -> SEL(s(X''), cons(Y'', ng(X''''')))
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost
SEL(s(s(X'')), cons(Y, cons(Y'', ng(ng(X'''''))))) -> SEL(s(X''), cons(Y'', ng(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(nf(X'''''))))) -> SEL(s(X''), cons(Y'', ng(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(ng(X'''''))))) -> SEL(s(X''), cons(Y'', nf(ng(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(nf(X'''''))))) -> SEL(s(X''), cons(Y'', nf(nf(X'''''))))
SEL(s(s(X'')), cons(Y, cons(Y'', nf(X''''')))) -> SEL(s(X''), cons(Y'', nf(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(X), cons(Y, ng(ng(X''')))) -> SEL(X, g(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, f(X'''))
SEL(s(X), cons(Y, nf(nf(X''')))) -> SEL(X, f(f(activate(X'''))))
SEL(s(X), cons(Y, nf(ng(X''')))) -> SEL(X, f(g(activate(X'''))))
SEL(s(X), cons(Y, nf(X'''))) -> SEL(X, cons(activate(X'''), nf(ng(activate(X''')))))
SEL(s(X), cons(Y, ng(nf(X''')))) -> SEL(X, g(f(activate(X'''))))
SEL(s(s(X'')), cons(Y, cons(Y'', ng(X''''')))) -> SEL(s(X''), cons(Y'', ng(X''''')))
POL(activate(x1)) = 0 POL(n__f(x1)) = 0 POL(0) = 0 POL(g(x1)) = 0 POL(cons(x1, x2)) = 0 POL(SEL(x1, x2)) = x1 POL(n__g(x1)) = 0 POL(s(x1)) = 1 + x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 17
↳Nar
...
→DP Problem 22
↳Dependency Graph
f(X) -> cons(X, nf(ng(X)))
f(X) -> nf(X)
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
g(X) -> ng(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nf(X)) -> f(activate(X))
activate(ng(X)) -> g(activate(X))
activate(X) -> X
innermost