R
↳Dependency Pair Analysis
ATAIL(cons(X, XS)) -> MARK(XS)
MARK(zeros) -> AZEROS
MARK(tail(X)) -> ATAIL(mark(X))
MARK(tail(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(cons(X1, X2)) -> MARK(X1)
MARK(tail(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
ATAIL(cons(X, XS)) -> MARK(XS)
azeros -> cons(0, zeros)
azeros -> zeros
atail(cons(X, XS)) -> mark(XS)
atail(X) -> tail(X)
mark(zeros) -> azeros
mark(tail(X)) -> atail(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(0) -> 0
innermost
MARK(cons(X1, X2)) -> MARK(X1)
atail(cons(X, XS)) -> mark(XS)
atail(X) -> tail(X)
mark(zeros) -> azeros
mark(tail(X)) -> atail(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(0) -> 0
azeros -> cons(0, zeros)
azeros -> zeros
POL(0) = 0 POL(MARK(x1)) = 1 + x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(a__zeros) = 1 POL(tail(x1)) = x1 POL(a__tail(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(zeros) = 0 POL(A__TAIL(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
MARK(tail(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
ATAIL(cons(X, XS)) -> MARK(XS)
azeros -> cons(0, zeros)
azeros -> zeros
atail(cons(X, XS)) -> mark(XS)
atail(X) -> tail(X)
mark(zeros) -> azeros
mark(tail(X)) -> atail(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(0) -> 0
innermost
MARK(tail(X)) -> MARK(X)
MARK(tail(X)) -> ATAIL(mark(X))
atail(cons(X, XS)) -> mark(XS)
atail(X) -> tail(X)
mark(zeros) -> azeros
mark(tail(X)) -> atail(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(0) -> 0
azeros -> cons(0, zeros)
azeros -> zeros
POL(0) = 0 POL(MARK(x1)) = x1 POL(cons(x1, x2)) = x2 POL(a__zeros) = 0 POL(tail(x1)) = 1 + x1 POL(a__tail(x1)) = 1 + x1 POL(mark(x1)) = x1 POL(zeros) = 0 POL(A__TAIL(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
ATAIL(cons(X, XS)) -> MARK(XS)
azeros -> cons(0, zeros)
azeros -> zeros
atail(cons(X, XS)) -> mark(XS)
atail(X) -> tail(X)
mark(zeros) -> azeros
mark(tail(X)) -> atail(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(0) -> 0
innermost