Term Rewriting System R:
[X, XS, X1, X2]
active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(tail(X)) -> TAIL(active(X))
ACTIVE(tail(X)) -> ACTIVE(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
TAIL(mark(X)) -> TAIL(X)
TAIL(ok(X)) -> TAIL(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(tail(X)) -> TAIL(proper(X))
PROPER(tail(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pairs:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  0  
  POL(ok(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 6
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:

CONS(mark(X1), X2) -> CONS(X1, X2)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mark(x1))=  1 + x1  
  POL(CONS(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 6
Polo
             ...
               →DP Problem 7
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pairs:

TAIL(ok(X)) -> TAIL(X)
TAIL(mark(X)) -> TAIL(X)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TAIL(ok(X)) -> TAIL(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TAIL(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 8
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:

TAIL(mark(X)) -> TAIL(X)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TAIL(mark(X)) -> TAIL(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(TAIL(x1))=  x1  
  POL(mark(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 8
Polo
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pairs:

ACTIVE(tail(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(tail(X)) -> ACTIVE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  x1  
  POL(tail(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 10
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(ACTIVE(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 10
Polo
             ...
               →DP Problem 11
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Remaining


Dependency Pair:


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Remaining


Dependency Pairs:

PROPER(tail(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PROPER(tail(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  x1 + x2  
  POL(tail(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 12
Polynomial Ordering
       →DP Problem 5
Remaining


Dependency Pairs:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PROPER(x1))=  x1  
  POL(cons(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 12
Polo
             ...
               →DP Problem 13
Dependency Graph
       →DP Problem 5
Remaining


Dependency Pair:


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(zeros) -> mark(cons(0, zeros))
active(tail(cons(X, XS))) -> mark(XS)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes