Term Rewriting System R:
[X, XS, N]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))
AFTER(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfrom(X)) -> FROM(X)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))

Rules:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Strategy:

innermost

The following dependency pair can be strictly oriented:

AFTER(s(N), cons(X, XS)) -> AFTER(N, activate(XS))

The following usable rules for innermost w.r.t. to the AFS can be oriented:

activate(nfrom(X)) -> from(X)
activate(X) -> X
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(n__from) =  0 POL(from) =  0 POL(AFTER(x1, x2)) =  x1 + x2 POL(activate(x1)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
AFTER(x1, x2) -> AFTER(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
activate(x1) -> activate(x1)
nfrom(x1) -> nfrom
from(x1) -> from

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes