Term Rewriting System R:
[X, XS, N]
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
after(s(N), cons(X, XS)) -> after(N, activate(XS))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
Innermost Termination of R to be shown.
R
↳Removing Redundant Rules for Innermost Termination
Removing the following rules from R which left hand sides contain non normal subterms
after(s(N), cons(X, XS)) -> after(N, activate(XS))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
Furthermore, R contains one SCC.
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
Rules:
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
after(0, XS) -> XS
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
We number the DPs as follows:
- ACTIVATE(ns(X)) -> ACTIVATE(X)
- ACTIVATE(nfrom(X)) -> ACTIVATE(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
nfrom(x1) -> nfrom(x1)
ns(x1) -> ns(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes