Term Rewriting System R:
[X, XS, N, Y, YS, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

MINUS(s(X), s(Y)) -> MINUS(X, Y)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 4
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

MINUS(s(X), s(Y)) -> MINUS(X, Y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. MINUS(s(X), s(Y)) -> MINUS(X, Y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules


Dependency Pairs:

ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 5
Size-Change Principle
       →DP Problem 3
UsableRules


Dependency Pairs:

ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
  2. ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
  3. ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
2>1
{1, 2} , {1, 2}
1>1
{3} , {3}
1>1
1>2

which lead(s) to this/these maximal multigraph(s):
{3} , {1, 2}
1>1
{1, 2} , {3}
2>1
2>2
{1, 2} , {3}
1>1
1>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
nzWquot(x1, x2) -> nzWquot(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X


Strategy:

innermost




As we are in the innermost case, we can delete all 2 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Size-Change Principle


Dependency Pair:

SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))


Rules:


zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(XS, nil) -> nil
zWquot(X1, X2) -> nzWquot(X1, X2)
zWquot(nil, XS) -> nil
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
quot(0, s(Y)) -> 0
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(X) -> X
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)


Strategy:

innermost




We number the DPs as follows:
  1. SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes