R
↳Dependency Pair Analysis
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
MINUS(s(X), s(Y)) -> MINUS(X, Y)
MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
MINUS(s(s(X'')), s(s(Y''))) -> MINUS(s(X''), s(Y''))
MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
MINUS(s(s(s(X''''))), s(s(s(Y'''')))) -> MINUS(s(s(X'''')), s(s(Y'''')))
POL(MINUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X''), s(0)) -> QUOT(0, s(0))
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Narrowing Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
QUOT(s(s(X''')), s(s(0))) -> QUOT(0, s(s(0)))
QUOT(s(s(s(X'))), s(s(s(Y')))) -> QUOT(minus(X', Y'), s(s(s(Y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
QUOT(s(s(s(X'))), s(s(s(Y')))) -> QUOT(minus(X', Y'), s(s(s(Y'))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
no new Dependency Pairs are created.
QUOT(s(s(s(X'))), s(s(s(Y')))) -> QUOT(minus(X', Y'), s(s(s(Y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ZWQUOT(cons(X, nzWquot(X1'', X2'')), cons(Y, YS)) -> ACTIVATE(nzWquot(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ZWQUOT(cons(X, nzWquot(X1'', X2'')), cons(Y, YS)) -> ACTIVATE(nzWquot(X1'', X2''))
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, nzWquot(X1'', X2''))) -> ACTIVATE(nzWquot(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ZWQUOT(cons(X, XS), cons(Y, nzWquot(X1'', X2''))) -> ACTIVATE(nzWquot(X1'', X2''))
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
ZWQUOT(cons(X, nzWquot(X1'', X2'')), cons(Y, YS)) -> ACTIVATE(nzWquot(X1'', X2''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
ACTIVATE(nzWquot(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))) -> ZWQUOT(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
ZWQUOT(cons(X, nzWquot(X1'', X2'')), cons(Y, YS)) -> ACTIVATE(nzWquot(X1'', X2''))
ACTIVATE(nzWquot(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))) -> ZWQUOT(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(X1'', X2''))) -> ACTIVATE(nzWquot(X1'', X2''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ZWQUOT(cons(X, nzWquot(X1'', X2'')), cons(Y, YS)) -> ACTIVATE(nzWquot(X1'', X2''))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))) -> ZWQUOT(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(X1'', X2''))) -> ACTIVATE(nzWquot(X1'', X2''))
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ZWQUOT(cons(X, XS), cons(Y, nzWquot(X1'', X2''))) -> ACTIVATE(nzWquot(X1'', X2''))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))) -> ZWQUOT(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
ACTIVATE(nzWquot(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))) -> ZWQUOT(cons(X'', nzWquot(X1'''', X2'''')), cons(Y'', YS''))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
ACTIVATE(nzWquot(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))) -> ZWQUOT(cons(X'', XS''), cons(Y'', nzWquot(X1'''', X2'''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 16
↳Polynomial Ordering
→DP Problem 4
↳Nar
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
ACTIVATE(nzWquot(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', XS'''), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', nzWquot(X1''''', X2''''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', nzWquot(X1''''', X2''''')))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))), cons(Y''', YS'''))
ACTIVATE(nzWquot(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))) -> ZWQUOT(cons(X''', nzWquot(cons(X'''''', nzWquot(X1'''''''', X2'''''''')), cons(Y'''''', YS''''''))), cons(Y''', YS'''))
ACTIVATE(nzWquot(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))) -> ZWQUOT(cons(X''', nzWquot(X1''''', X2''''')), cons(Y''', nzWquot(cons(X'''''', XS''''''), cons(Y'''''', nzWquot(X1'''''''', X2'''''''')))))
POL(n__zWquot(x1, x2)) = 1 + x1 + x2 POL(cons(x1, x2)) = x2 POL(ZWQUOT(x1, x2)) = x1 + x2 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 17
↳Dependency Graph
→DP Problem 4
↳Nar
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ZWQUOT(cons(X, XS), cons(Y, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
ZWQUOT(cons(X, nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2'''''')))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', XS''''), cons(Y'''', nzWquot(X1'''''', X2''''''))))
ZWQUOT(cons(X, nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS''''))), cons(Y, YS)) -> ACTIVATE(nzWquot(cons(X'''', nzWquot(X1'''''', X2'''''')), cons(Y'''', YS'''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Narrowing Transformation
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, nzWquot(X1', X2'))) -> SEL(N, zWquot(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Narrowing Transformation
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nzWquot(X1', X2'))) -> SEL(N, zWquot(X1', X2'))
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(N), cons(X, nfrom(X''))) -> SEL(N, from(X''))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, nfrom(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
SEL(s(N), cons(X, nzWquot(X1', X2'))) -> SEL(N, zWquot(X1', X2'))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
SEL(s(N), cons(X, nzWquot(X1', X2'))) -> SEL(N, zWquot(X1', X2'))
SEL(s(N), cons(X, nzWquot(X1'', nil))) -> SEL(N, nil)
SEL(s(N), cons(X, nzWquot(nil, X2''))) -> SEL(N, nil)
SEL(s(N), cons(X, nzWquot(cons(X'', XS'), cons(Y', YS')))) -> SEL(N, cons(quot(X'', Y'), nzWquot(activate(XS'), activate(YS'))))
SEL(s(N), cons(X, nzWquot(X1'', X2''))) -> SEL(N, nzWquot(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
SEL(s(N), cons(X, nzWquot(cons(X'', XS'), cons(Y', YS')))) -> SEL(N, cons(quot(X'', Y'), nzWquot(activate(XS'), activate(YS'))))
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(N), cons(X, XS')) -> SEL(N, XS')
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
SEL(s(s(N'')), cons(X, cons(X'', nfrom(X''''')))) -> SEL(s(N''), cons(X'', nfrom(X''''')))
SEL(s(s(N'')), cons(X, cons(X'', nzWquot(cons(X'''', XS'''), cons(Y''', YS'''))))) -> SEL(s(N''), cons(X'', nzWquot(cons(X'''', XS'''), cons(Y''', YS'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 21
↳Polynomial Ordering
SEL(s(N), cons(X, nzWquot(cons(X'', XS'), cons(Y', YS')))) -> SEL(N, cons(quot(X'', Y'), nzWquot(activate(XS'), activate(YS'))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, nzWquot(cons(X'', XS'), cons(Y', YS')))) -> SEL(N, cons(quot(X'', Y'), nzWquot(activate(XS'), activate(YS'))))
POL(n__from(x1)) = 0 POL(from(x1)) = 0 POL(activate(x1)) = 0 POL(0) = 0 POL(n__zWquot(x1, x2)) = 0 POL(zWquot(x1, x2)) = 0 POL(cons(x1, x2)) = 0 POL(SEL(x1, x2)) = x1 POL(minus(x1, x2)) = 0 POL(nil) = 0 POL(quot(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 24
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 22
↳Polynomial Ordering
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, nfrom(X'''))) -> SEL(N, cons(X''', nfrom(s(X'''))))
POL(n__from(x1)) = 0 POL(SEL(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 23
↳Polynomial Ordering
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(s(N'')), cons(X, cons(X'', XS'''))) -> SEL(s(N''), cons(X'', XS'''))
POL(SEL(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1