R
↳Dependency Pair Analysis
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
MINUS(s(X), s(Y)) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> QUOT(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
MINUS(s(X), s(Y)) -> MINUS(X, Y)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X''), s(0)) -> QUOT(0, s(0))
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(minus(X'', Y''), s(s(Y'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(X, 0) -> 0
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nzWquot(X1, X2)) -> zWquot(X1, X2)
activate(X) -> X
innermost