R
↳Removing Redundant Rules for Innermost Termination
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
minus(s(X), s(Y)) -> minus(X, Y)
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2))
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X2)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Negative Polynomial Order
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X1)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
minus(X, 0) -> 0
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nzWquot(X1, X2)) -> zWquot(activate(X1), activate(X2))
activate(X) -> X
s(X) -> ns(X)
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nzWquot(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nzWquot(X1, X2)) -> ZWQUOT(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nzWquot(X1, X2)) -> zWquot(activate(X1), activate(X2))
activate(X) -> X
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
POL( ACTIVATE(x1) ) = x1
POL( nzWquot(x1, x2) ) = x1 + x2 + 1
POL( ZWQUOT(x1, x2) ) = x1 + x2
POL( cons(x1, x2) ) = x2
POL( ns(x1) ) = x1
POL( nfrom(x1) ) = x1
POL( activate(x1) ) = x1
POL( from(x1) ) = x1
POL( s(x1) ) = x1
POL( zWquot(x1, x2) ) = x1 + x2 + 1
POL( nil ) = 0
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
...
→DP Problem 2
↳Dependency Graph
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(YS)
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ZWQUOT(cons(X, XS), cons(Y, YS)) -> ACTIVATE(XS)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
minus(X, 0) -> 0
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nzWquot(X1, X2)) -> zWquot(activate(X1), activate(X2))
activate(X) -> X
s(X) -> ns(X)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
...
→DP Problem 3
↳Size-Change Principle
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
sel(0, cons(X, XS)) -> X
minus(X, 0) -> 0
zWquot(XS, nil) -> nil
zWquot(nil, XS) -> nil
zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), nzWquot(activate(XS), activate(YS)))
zWquot(X1, X2) -> nzWquot(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nzWquot(X1, X2)) -> zWquot(activate(X1), activate(X2))
activate(X) -> X
s(X) -> ns(X)
|
|
trivial
nfrom(x1) -> nfrom(x1)
ns(x1) -> ns(x1)