f(0) -> cons(0)

f(s(0)) -> f(p(s(0)))

p(s(0)) -> 0

R

↳Dependency Pair Analysis

F(s(0)) -> F(p(s(0)))

F(s(0)) -> P(s(0))

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**F(s(0)) -> F(p(s(0)))**

f(0) -> cons(0)

f(s(0)) -> f(p(s(0)))

p(s(0)) -> 0

innermost

The following dependency pair can be strictly oriented:

F(s(0)) -> F(p(s(0)))

Additionally, the following usable rule for innermost w.r.t. to the implicit AFS can be oriented:

p(s(0)) -> 0

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(0)= 0 _{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 _{ }^{ }_{ }^{ }POL(F(x)_{1})= x _{1}_{ }^{ }_{ }^{ }POL(p(x)_{1})= 0 _{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

f(0) -> cons(0)

f(s(0)) -> f(p(s(0)))

p(s(0)) -> 0

innermost

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes