R
↳Dependency Pair Analysis
F(s(0)) -> F(p(s(0)))
F(s(0)) -> P(s(0))
ACTIVATE(nf(X)) -> F(activate(X))
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(n0) -> 0'
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nf(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nf(X)) -> ACTIVATE(X)
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(ns(X''))) -> ACTIVATE(ns(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
ACTIVATE(nf(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(ns(X)) -> ACTIVATE(X)
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nf(ns(X''))) -> ACTIVATE(ns(X''))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nf(nf(X''))) -> ACTIVATE(nf(X''))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nf(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nf(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(ns(X''))) -> ACTIVATE(ns(X''))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
ACTIVATE(ns(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(ns(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ns(nf(nf(ns(X''''''))))) -> ACTIVATE(nf(nf(ns(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
ACTIVATE(ns(nf(nf(ns(X''''''))))) -> ACTIVATE(nf(nf(ns(X''''''))))
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ns(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(ns(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(ns(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(ns(nf(ns(ns(X''''''))))) -> ACTIVATE(nf(ns(ns(X''''''))))
ACTIVATE(ns(nf(ns(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ns(nf(nf(X'''''''')))))
ACTIVATE(ns(nf(ns(nf(ns(X'''''''')))))) -> ACTIVATE(nf(ns(nf(ns(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
ACTIVATE(ns(nf(ns(nf(ns(X'''''''')))))) -> ACTIVATE(nf(ns(nf(ns(X'''''''')))))
ACTIVATE(ns(nf(ns(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ns(nf(nf(X'''''''')))))
ACTIVATE(ns(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
ACTIVATE(ns(nf(nf(ns(X''''''))))) -> ACTIVATE(nf(nf(ns(X''''''))))
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(ns(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ns(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nf(ns(ns(X''''''))))) -> ACTIVATE(nf(ns(ns(X''''''))))
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
ACTIVATE(ns(nf(ns(nf(ns(X'''''''')))))) -> ACTIVATE(nf(ns(nf(ns(X'''''''')))))
ACTIVATE(ns(nf(ns(nf(nf(X'''''''')))))) -> ACTIVATE(nf(ns(nf(nf(X'''''''')))))
ACTIVATE(ns(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
ACTIVATE(ns(nf(nf(ns(X''''''))))) -> ACTIVATE(nf(nf(ns(X''''''))))
ACTIVATE(ns(nf(nf(nf(X''''''))))) -> ACTIVATE(nf(nf(nf(X''''''))))
ACTIVATE(ns(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(ns(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(ns(nf(ns(ns(X''''''))))) -> ACTIVATE(nf(ns(ns(X''''''))))
POL(n__f(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
ACTIVATE(nf(ns(nf(nf(X''''''))))) -> ACTIVATE(ns(nf(nf(X''''''))))
ACTIVATE(nf(nf(ns(X'''')))) -> ACTIVATE(nf(ns(X'''')))
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
ACTIVATE(nf(ns(ns(X'''')))) -> ACTIVATE(ns(ns(X'''')))
ACTIVATE(nf(ns(nf(ns(X''''''))))) -> ACTIVATE(ns(nf(ns(X''''''))))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost
ACTIVATE(nf(nf(nf(X'''')))) -> ACTIVATE(nf(nf(X'''')))
POL(n__f(x1)) = 1 + x1 POL(ACTIVATE(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
f(0) -> cons(0, nf(ns(n0)))
f(s(0)) -> f(p(s(0)))
f(X) -> nf(X)
p(s(0)) -> 0
s(X) -> ns(X)
0 -> n0
activate(nf(X)) -> f(activate(X))
activate(ns(X)) -> s(activate(X))
activate(n0) -> 0
activate(X) -> X
innermost