R
↳Dependency Pair Analysis
ACTIVE(f(0)) -> CONS(0, f(s(0)))
ACTIVE(f(0)) -> F(s(0))
ACTIVE(f(0)) -> S(0)
ACTIVE(f(s(0))) -> F(p(s(0)))
ACTIVE(f(s(0))) -> P(s(0))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(p(X)) -> P(active(X))
ACTIVE(p(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
P(mark(X)) -> P(X)
P(ok(X)) -> P(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(p(X)) -> P(proper(X))
PROPER(p(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 8
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
P(ok(X)) -> P(X)
P(mark(X)) -> P(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
P(ok(X)) -> P(X)
P(mark(X)) -> P(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)
none
innermost
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
f(x1) -> f(x1)
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 7
↳UsableRules
PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
none
innermost
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
f(x1) -> f(x1)
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 14
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(f(X)) -> f(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
seven new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(p(s(0)))) -> TOP(mark(0))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 14
↳Nar
...
→DP Problem 15
↳Narrowing Transformation
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(p(s(0)))) -> TOP(mark(0))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(mark(X)) -> TOP(proper(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(f(X)) -> f(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
five new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 14
↳Nar
...
→DP Problem 16
↳Negative Polynomial Order
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(f(X)) -> f(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
p(mark(X)) -> mark(p(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
f(mark(X)) -> mark(f(X))
s(ok(X)) -> ok(s(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(p(X)) -> p(proper(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(X)) -> f(active(X))
active(s(X)) -> s(active(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( f(x1) ) = 1
POL( mark(x1) ) = x1
POL( cons(x1, x2) ) = 0
POL( s(x1) ) = 0
POL( p(x1) ) = 0
POL( proper(x1) ) = 1
POL( 0 ) = 0
POL( active(x1) ) = 1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 14
↳Nar
...
→DP Problem 17
↳Negative Polynomial Order
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(f(X)) -> f(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
p(mark(X)) -> mark(p(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
f(mark(X)) -> mark(f(X))
s(ok(X)) -> ok(s(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(p(X)) -> p(proper(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(X)) -> f(active(X))
active(s(X)) -> s(active(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( f(x1) ) = x1
POL( s(x1) ) = 1
POL( mark(x1) ) = x1
POL( p(x1) ) = 0
POL( cons(x1, x2) ) = 0
POL( proper(x1) ) = x1
POL( active(x1) ) = x1
POL( 0 ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 14
↳Nar
...
→DP Problem 18
↳Remaining Obligation(s)
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(f(s(0))) -> mark(f(p(s(0))))
active(p(X)) -> p(active(X))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(p(X)) -> p(proper(X))
proper(f(X)) -> f(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost