Term Rewriting System R:
[X, X1, X2]
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

ACTIVE(f(0)) -> CONS(0, f(s(0)))
ACTIVE(f(0)) -> F(s(0))
ACTIVE(f(0)) -> S(0)
ACTIVE(f(s(0))) -> F(p(s(0)))
ACTIVE(f(s(0))) -> P(s(0))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(p(X)) -> P(active(X))
ACTIVE(p(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
P(mark(X)) -> P(X)
P(ok(X)) -> P(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(p(X)) -> P(proper(X))
PROPER(p(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains seven SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

F(ok(X)) -> F(X)
F(mark(X)) -> F(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

F(ok(X)) -> F(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mark(x1)) =  x1 POL(ok(x1)) =  1 + x1 POL(F(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 8`
`             ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

F(mark(X)) -> F(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

F(mark(X)) -> F(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mark(x1)) =  1 + x1 POL(F(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 8`
`             ↳Polo`
`             ...`
`               →DP Problem 9`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mark(x1)) =  0 POL(ok(x1)) =  1 + x1 POL(CONS(x1, x2)) =  x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 10`
`             ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

CONS(mark(X1), X2) -> CONS(X1, X2)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mark(x1)) =  1 + x1 POL(CONS(x1, x2)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 10`
`             ↳Polo`
`             ...`
`               →DP Problem 11`
`                 ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

S(ok(X)) -> S(X)
S(mark(X)) -> S(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(S(x1)) =  x1 POL(mark(x1)) =  x1 POL(ok(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`           →DP Problem 12`
`             ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

S(mark(X)) -> S(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

S(mark(X)) -> S(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(S(x1)) =  x1 POL(mark(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`           →DP Problem 12`
`             ↳Polo`
`             ...`
`               →DP Problem 13`
`                 ↳Dependency Graph`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polynomial Ordering`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

P(ok(X)) -> P(X)
P(mark(X)) -> P(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

P(ok(X)) -> P(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(P(x1)) =  x1 POL(mark(x1)) =  x1 POL(ok(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`           →DP Problem 14`
`             ↳Polynomial Ordering`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

P(mark(X)) -> P(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

P(mark(X)) -> P(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(P(x1)) =  x1 POL(mark(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`           →DP Problem 14`
`             ↳Polo`
`             ...`
`               →DP Problem 15`
`                 ↳Dependency Graph`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polynomial Ordering`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

ACTIVE(f(X)) -> ACTIVE(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(ACTIVE(x1)) =  x1 POL(cons(x1, x2)) =  x1 POL(s(x1)) =  x1 POL(f(x1)) =  1 + x1 POL(p(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`           →DP Problem 16`
`             ↳Polynomial Ordering`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

ACTIVE(p(X)) -> ACTIVE(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(ACTIVE(x1)) =  x1 POL(cons(x1, x2)) =  x1 POL(s(x1)) =  x1 POL(p(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`           →DP Problem 16`
`             ↳Polo`
`             ...`
`               →DP Problem 17`
`                 ↳Polynomial Ordering`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

ACTIVE(s(X)) -> ACTIVE(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(ACTIVE(x1)) =  x1 POL(cons(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`           →DP Problem 16`
`             ↳Polo`
`             ...`
`               →DP Problem 18`
`                 ↳Polynomial Ordering`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

ACTIVE(cons(X1, X2)) -> ACTIVE(X1)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(ACTIVE(x1)) =  x1 POL(cons(x1, x2)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`           →DP Problem 16`
`             ↳Polo`
`             ...`
`               →DP Problem 19`
`                 ↳Dependency Graph`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PROPER(f(X)) -> PROPER(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PROPER(x1)) =  x1 POL(cons(x1, x2)) =  x1 + x2 POL(s(x1)) =  x1 POL(f(x1)) =  1 + x1 POL(p(x1)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`           →DP Problem 20`
`             ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PROPER(p(X)) -> PROPER(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PROPER(x1)) =  x1 POL(cons(x1, x2)) =  x1 + x2 POL(s(x1)) =  x1 POL(p(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`           →DP Problem 20`
`             ↳Polo`
`             ...`
`               →DP Problem 21`
`                 ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PROPER(s(X)) -> PROPER(X)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PROPER(x1)) =  x1 POL(cons(x1, x2)) =  x1 + x2 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`           →DP Problem 20`
`             ↳Polo`
`             ...`
`               →DP Problem 22`
`                 ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pairs can be strictly oriented:

PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PROPER(x1)) =  x1 POL(cons(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`           →DP Problem 20`
`             ↳Polo`
`             ...`
`               →DP Problem 23`
`                 ↳Dependency Graph`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Narrowing Transformation`

Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(X)) -> TOP(proper(X))
five new Dependency Pairs are created:

TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 24`
`             ↳Narrowing Transformation`

Dependency Pairs:

TOP(mark(p(X''))) -> TOP(p(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(ok(X)) -> TOP(active(X))

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(X)) -> TOP(active(X))
seven new Dependency Pairs are created:

TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(p(s(0)))) -> TOP(mark(0))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(p(X''))) -> TOP(p(active(X'')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 24`
`             ↳Nar`
`             ...`
`               →DP Problem 25`
`                 ↳Polynomial Ordering`

Dependency Pairs:

TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

TOP(ok(f(0))) -> TOP(mark(cons(0, f(s(0)))))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(active(x1)) =  0 POL(proper(x1)) =  0 POL(0) =  0 POL(cons(x1, x2)) =  0 POL(s(x1)) =  0 POL(mark(x1)) =  x1 POL(ok(x1)) =  x1 POL(TOP(x1)) =  x1 POL(f(x1)) =  1 POL(p(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 24`
`             ↳Nar`
`             ...`
`               →DP Problem 26`
`                 ↳Polynomial Ordering`

Dependency Pairs:

TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

The following dependency pair can be strictly oriented:

TOP(ok(f(s(0)))) -> TOP(mark(f(p(s(0)))))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(active(x1)) =  x1 POL(proper(x1)) =  x1 POL(0) =  0 POL(cons(x1, x2)) =  0 POL(s(x1)) =  1 POL(mark(x1)) =  x1 POL(ok(x1)) =  x1 POL(TOP(x1)) =  1 + x1 POL(f(x1)) =  x1 POL(p(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`       →DP Problem 5`
`         ↳Polo`
`       →DP Problem 6`
`         ↳Polo`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 24`
`             ↳Nar`
`             ...`
`               →DP Problem 27`
`                 ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

TOP(ok(p(X''))) -> TOP(p(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(f(X''))) -> TOP(f(active(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(f(X''))) -> TOP(f(proper(X'')))
TOP(mark(p(X''))) -> TOP(p(proper(X'')))

Rules:

active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:33 minutes