R
↳Dependency Pair Analysis
ACTIVE(f(0)) -> CONS(0, f(s(0)))
ACTIVE(f(0)) -> F(s(0))
ACTIVE(f(0)) -> S(0)
ACTIVE(f(s(0))) -> F(p(s(0)))
ACTIVE(f(s(0))) -> P(s(0))
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(p(X)) -> P(active(X))
ACTIVE(p(X)) -> ACTIVE(X)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
P(mark(X)) -> P(X)
P(ok(X)) -> P(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(p(X)) -> P(proper(X))
PROPER(p(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(ok(X)) -> F(X)
POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 8
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
F(mark(X)) -> F(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
F(mark(X)) -> F(X)
POL(mark(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 8
↳Polo
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(CONS(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 10
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
CONS(mark(X1), X2) -> CONS(X1, X2)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
CONS(mark(X1), X2) -> CONS(X1, X2)
POL(mark(x1)) = 1 + x1 POL(CONS(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
S(ok(X)) -> S(X)
POL(S(x1)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 12
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
S(mark(X)) -> S(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
S(mark(X)) -> S(X)
POL(S(x1)) = x1 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 12
↳Polo
...
→DP Problem 13
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
P(ok(X)) -> P(X)
P(mark(X)) -> P(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
P(ok(X)) -> P(X)
POL(P(x1)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 14
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
P(mark(X)) -> P(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
P(mark(X)) -> P(X)
POL(P(x1)) = x1 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 14
↳Polo
...
→DP Problem 15
↳Dependency Graph
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(f(X)) -> ACTIVE(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(f(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(cons(x1, x2)) = x1 POL(s(x1)) = x1 POL(f(x1)) = 1 + x1 POL(p(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 16
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
ACTIVE(p(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(p(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(cons(x1, x2)) = x1 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 16
↳Polo
...
→DP Problem 17
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(s(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(cons(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 16
↳Polo
...
→DP Problem 18
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(cons(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 16
↳Polo
...
→DP Problem 19
↳Dependency Graph
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polynomial Ordering
→DP Problem 7
↳Remaining
PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(f(X)) -> PROPER(X)
POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(f(x1)) = 1 + x1 POL(p(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 20
↳Polynomial Ordering
→DP Problem 7
↳Remaining
PROPER(p(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(p(X)) -> PROPER(X)
POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 20
↳Polo
...
→DP Problem 21
↳Polynomial Ordering
→DP Problem 7
↳Remaining
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(s(X)) -> PROPER(X)
POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 20
↳Polo
...
→DP Problem 22
↳Polynomial Ordering
→DP Problem 7
↳Remaining
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 20
↳Polo
...
→DP Problem 23
↳Dependency Graph
→DP Problem 7
↳Remaining
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining Obligation(s)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(f(0)) -> mark(cons(0, f(s(0))))
active(f(s(0))) -> mark(f(p(s(0))))
active(p(s(0))) -> mark(0)
active(f(X)) -> f(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(p(X)) -> p(active(X))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
p(mark(X)) -> mark(p(X))
p(ok(X)) -> ok(p(X))
proper(f(X)) -> f(proper(X))
proper(0) -> ok(0)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(p(X)) -> p(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost