R
↳Dependency Pair Analysis
F(g(X), Y) -> F(X, nf(g(X), activate(Y)))
F(g(X), Y) -> ACTIVATE(Y)
ACTIVATE(nf(X1, X2)) -> F(X1, X2)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACTIVATE(nf(X1, X2)) -> F(X1, X2)
F(g(X), Y) -> ACTIVATE(Y)
F(g(X), Y) -> F(X, nf(g(X), activate(Y)))
f(g(X), Y) -> f(X, nf(g(X), activate(Y)))
f(X1, X2) -> nf(X1, X2)
activate(nf(X1, X2)) -> f(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
F(g(X), Y) -> F(X, nf(g(X), activate(Y)))
F(g(X), nf(X1', X2')) -> F(X, nf(g(X), f(X1', X2')))
F(g(X), Y') -> F(X, nf(g(X), Y'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
F(g(X), Y') -> F(X, nf(g(X), Y'))
F(g(X), nf(X1', X2')) -> F(X, nf(g(X), f(X1', X2')))
F(g(X), Y) -> ACTIVATE(Y)
ACTIVATE(nf(X1, X2)) -> F(X1, X2)
f(g(X), Y) -> f(X, nf(g(X), activate(Y)))
f(X1, X2) -> nf(X1, X2)
activate(nf(X1, X2)) -> f(X1, X2)
activate(X) -> X
innermost